# The 'gauss' function takes two matrices, 'a' and 'b', with 'a' square, and it return the determinant of 'a' and a matrix 'x' such that a*x = b.
# If 'b' is the identity, then 'x' is the inverse of 'a'.
 
import copy
from fractions import Fraction
 
def gauss(a, b):
    a = copy.deepcopy(a)
    b = copy.deepcopy(b)
    n = len(a)
    p = len(b[0])
    det = 1
    for i in range(n - 1):
        k = i
        for j in range(i + 1, n):
            if abs(a[j][i]) > abs(a[k][i]):
                k = j
        if k != i:
            a[i], a[k] = a[k], a[i]
            b[i], b[k] = b[k], b[i]
            det = -det
 
        for j in range(i + 1, n):
            t = a[j][i]/a[i][i]
            for k in range(i + 1, n):
                a[j][k] -= t*a[i][k]
            for k in range(p):
                b[j][k] -= t*b[i][k]
 
    for i in range(n - 1, -1, -1):
        for j in range(i + 1, n):
            t = a[i][j]
            for k in range(p):
                b[i][k] -= t*b[j][k]
        t = 1/a[i][i]
        det *= a[i][i]
        for j in range(p):
            b[i][j] *= t
    return det, b
 
def zeromat(p, q):
    return [[0]*q for i in range(p)]
 
def matmul(a, b):
    n, p = len(a), len(a[0])
    p1, q = len(b), len(b[0])
    if p != p1:
        raise ValueError("Incompatible dimensions")
    c = zeromat(n, q)
    for i in range(n):
        for j in range(q):
                c[i][j] = sum(a[i][k]*b[k][j] for k in range(p))
    return c
 
 
def mapmat(f, a):
    return [list(map(f, v)) for v in a]
 
def ratmat(a):
    return mapmat(Fraction, a)
 
# As an example, compute the determinant and inverse of 3x3 magic square
 
a = [[2, 9, 4], [7, 5, 3], [6, 1, 8]]
b = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
det, c = gauss(a, b)
 
det
-360.0
 
c
[[-0.10277777777777776, 0.18888888888888888, -0.019444444444444438],
[0.10555555555555554, 0.02222222222222223, -0.061111111111111116],
[0.0638888888888889, -0.14444444444444446, 0.14722222222222223]]
 
# Check product
matmul(a, c)
[[1.0, 0.0, 0.0], [5.551115123125783e-17, 1.0, 0.0],
[1.1102230246251565e-16, -2.220446049250313e-16, 1.0]]
 
# Same with fractions, so the result is exact
 
det, c = gauss(ratmat(a), ratmat(b))
 
det
Fraction(-360, 1)
 
c
[[Fraction(-37, 360), Fraction(17, 90), Fraction(-7, 360)],
[Fraction(19, 180), Fraction(1, 45), Fraction(-11, 180)],
[Fraction(23, 360), Fraction(-13, 90), Fraction(53, 360)]]
 
matmul(a, c)
[[Fraction(1, 1), Fraction(0, 1), Fraction(0, 1)],
[Fraction(0, 1), Fraction(1, 1), Fraction(0, 1)],
[Fraction(0, 1), Fraction(0, 1), Fraction(1, 1)]]