def ToReducedRowEchelonForm( M ):
    if not M: return
    lead = 0
    rowCount = len(M)
    columnCount = len(M[0])
    for r in range(rowCount):
        if lead >= columnCount:
            return
        i = r
        while M[i][lead] == 0:
            i += 1
            if i == rowCount:
                i = r
                lead += 1
                if columnCount == lead:
                    return
        M[i],M[r] = M[r],M[i]
        lv = M[r][lead]
        M[r] = [ mrx / lv for mrx in M[r]]
        for i in range(rowCount):
            if i != r:
                lv = M[i][lead]
                M[i] = [ iv - lv*rv for rv,iv in zip(M[r],M[i])]
        lead += 1
    return M
 
def pmtx(mtx):
    print ('\n'.join(''.join(' %4s' % col for col in row) for row in mtx))
 
def convolve(f, h):
    g = [0] * (len(f) + len(h) - 1)
    for hindex, hval in enumerate(h):
        for findex, fval in enumerate(f):
            g[hindex + findex] += fval * hval
    return g
 
def deconvolve(g, f):
    lenh = len(g) - len(f) + 1
    mtx = [[0 for x in range(lenh+1)] for y in g]
    for hindex in range(lenh):
        for findex, fval in enumerate(f):
            gindex = hindex + findex
            mtx[gindex][hindex] = fval
    for gindex, gval in enumerate(g):        
        mtx[gindex][lenh] = gval
    ToReducedRowEchelonForm( mtx )
    return [mtx[i][lenh] for i in range(lenh)]  # h
 
if __name__ == '__main__':
    h = [-8,-9,-3,-1,-6,7]
    f = [-3,-6,-1,8,-6,3,-1,-9,-9,3,-2,5,2,-2,-7,-1]
    g = [24,75,71,-34,3,22,-45,23,245,25,52,25,-67,-96,96,31,55,36,29,-43,-7]
    assert convolve(f,h) == g
    assert deconvolve(g, f) == h