
Benchmarking of LLM generated unit-tests
Goal and motivation

Many developers rely on LLMs to generate unit tests. How to benchmark models and extend
the scope of explainability into the world of machine generated code? Classic test adequacy met-
rics such as code coverage and assertion density. However, these often fall short in measuring
behavioral correctness. Is LLM good in detecting faults, or is it just pointlessly maximizing cov-
erage? Some may manually review tests, but this is impossible given a large dataset of generated
code. Task becomes even more heavier considering every test needs an oracle to decide whether
it should pass or fail. No widely adopted tool currently integrates failure-accepting mutation
testing for LLM-generated test code. As AI-generated code becomes more prevalent, ensuring
its correctness is critical for software reliability and customer trust. Developing tools that better
benchmark test quality can improve internal LLM models in AI-assisted development tools. This
supports objectives around product excellence, developer experience, and long-term scalability.
This project introduces a benchmark framework based on Mutation Testing (MT) that accepts
test failures and uses a novel cosine similarity-based test differentiator. This framework evaluates
AI-generated tests by their ability to detect artificially injected faults, even when the expected out-
put is unknown. A modified fork of the MutPy library includes per-test mutation scores and
RAPFD metrics for prioritization, utilizing the cost effectiveness with real world limits.

Mutation Analysis

Every test suite is a potential candidate to be mutation analysed. If a candidate is identified as
invalid (MA cannot be performed), MA is skipped and the result counted into MA statistics. If
candidate breaks in any way MA pipeline (due to resource leaks), the sample (of all three test suites
per each model; regardless which one specifically caused the shutdown) is discarded from the run
and is not counted in the final statistics.

Given specific SUT t, mutation is observed (i.e. killed by t) whenever:

• t passes against OI and t fails on MI

• t fails against OI and fails against MI and the output similarity of these two results is less
then θ 1

Given specific SUT t, mutation is not observed (i.e. survives t) whenever:

• t passes against OI and passes against MI

• t fails against OI and t fails against MI and the output similarity of these two results is
greater than or equals to θ

Following cases are ignored, as they are assumed to occur randomly or in small numbers:

• t fails against OI and passes on MI
1θ is passed as a parameter to modified MutPy fork

1

• t times out either for OI or MI

• MI is incompetent

Mutation Testing

By default, MutPy generates all possible mutants based on the available mutation operators. In
order to reduce sample space, second order HOM strategy BETWEEN_OPERATORS (BTO) is used.
Derezinska and Halas [1] implements BTO strategy as a combination of two not-used FOMs. The
first FOM is taken from the top of the list. Second FOM is the first FOM that has been gener-
ated with a different mutation operator that the first selected mutant. If these FOMs have direct
relation in code AST (parent - child or vice versa) or they are the same mutant operators, they are
considered indifferent and not selected for BTO.

Metrics

For every TS, metrics described in following sections are calculated using modified MutPy fork.

Mutation Score

Denote test suiteTS ∈ T [3], its generated mutants asMTS and the killed mutants asKTS ,KTS ∈
MTS . Notice that M,K ∈ M

For every generated test suite (per each inspected LLM) generated for Rosetta task implemen-
tation, Mutation Score is computed

MS(TS) :=
KTS

|MTS |
(0.1)

Per-TestMutation Score

To allow automatized granular evaluation for every unit test case in generated test suite, modified
version of mutation score called p̈er-testm̈utation score is computed for each unit test ti

PTMS(TS, ti) :=
Kti

|MTS |
, ti ∈ TS (0.2)

Note that Kti are not mutually exclusive; therefore, the "per-test" scores do not sum up to 1.

Relative weighted Average Percentage of Faults Detected Score
(RAPFD)

Regarding test prioritization evaluation, two RAPFD scores for testing contsraint m = 5 are
computed for each generated test suite:

• real RAPFD of the actual ordering in generated TS

• randomized RAPFD

2

To explain how RAPFD formula is computed, for start APFD is described. Although Rother-
mel, Untch, Chu, and Harrold [2] first proposed the APFD metric, we will use notation from [5] as
a base intuition, which will be later extended to RAPFD. 2

APFD(TS) = 1−
∑

ϕ∈ΦTF(ϕ, TS)

|TS||Φ|
+

1

2|TS|
.

where

• ϕ ∈ Phi set of faults in software

• TF(ϕ, TS) index of test t ∈ TS that first detected ϕ

Wang, Fang, Chen, and Zhang [5] then defines RAPFD as follows:

RAPFD(TS, γ) = p(γ)−
∑

ϕ∈ΦRTF(ϕ, TS, γ)

γ × |Φ|
(0.3)

where

• γ ∈ N is a test resource constraint (i.e. how many unit tests are allowed to be run due to
limited resources)34

• RFT is constrained TF from previous APFD,

RTF(ϕ, TS, γ) =

{
TF(ϕ, TS) if γ ≥ TF(ϕ, TS),

0 else
(0.4)

• p(γ) discrete cumulative step function of detected faults
i.e. number of faults detected by first m to the overall number of faults in Φ

p(γ) =
|{ϕ ∈ Φ | RTF(ϕ, TS, γ) ̸= 0}|

|Φ|
. (0.5)

For the comparison study, the metrics RAPFD(TSi, 5) and RAPFD(TS′
i, 5) will be com-

puted for each test suite TSi and its corresponding reordered version TS′
i.

Test Differentiator

Test diffentiator is computed with parameter θ = 0.95 as

d(t, px, py) =

{
false, if px == py

cos_sim(px, py) ≤ θ, otherwise

2Note that TS is used to denote test suite instead of original σ from mentioned research
3Originally Wang, Fang, Chen, and Zhang [5] uses m to denote this bound-type constraint
4often chosen as γ =

∑n
i=1 |TSi| ∗ δ

n
where delta specifies reduction rate δ = (0, 1).

3

LLM Score Rankings

Based on computed metrics from and subsequent insights from exploratory data analysis, score
ranks are created for each of the inspected LLM. Depending on the metric or insight indicator,
ranking will be assigned as follows:

• from 1 (best performing) to 3 (worst performing) if metric/insight has positive indicator,
i.e. less score points indicate better qualitative outcome

• from 1 (least negative quality) to 3 (most negative quality) if metric/insight has negative
indicator, i.e. higher score points indicates worse qualitative outcome

All of the scores are Borda counted into a final one, and since inverted counting system is used,
models are ranked best to worst based on least to most scored points. If two final rank scores result
in the same value, lexicographic Tie-Break (TB) is used for resolution. Winner is selected as the
entry with most top positions wins. If top positions wins are of equal amount, second position is
compared, and so on.

Implementation

MutPy module source code was modified:

• mutpy/commandline.py additional parameters for CLI were implemented (RAPFD con-
straint, eda folder location, theta factor)

• mutpy/views.py custom print functions for per-test metrics and per-mutant stast were added

• mutpy/test_runners/base.py unittest run modified to accept both multiple (original) test
failures and original passed as mutation killers

• mutpy/test_runners/unittest_runner.py support test order for RAPFD metrics

• mutpy/controller.py - main implemented logic, accept test failures, compute RAPFD and
APFD, test output comparator using spacy cosine similarity, eda statistics data handling,
modified mutation score for per-test and test failures

Docker Setup

1. docker build -t my-mutation-test .

2. docker run –env-file .env my-mutation-test

Run Docker image. You can modify MA/MT run parameters by modifying the attached
.env file.

3. docker ps -a

Find container ID.

4. docker cp <container_id>:/app ./app_output

Copy script output to app_output or other desired location.

4

Results

In Docker output (copied to app_output), there is a duplicated project along with extracted data
under the eda folder. For the original project Evaluation run, see results in Evaluation/eda folder
in the Evaluation directory. You can compare these with yours in app_output/eda.

Mutation Analysis Results

• eda/MT_EDA_output.ipynb: Mutation Testing postprocessing, EDA and evaluation

• eda/MA_EDA_output.ipynb: Mutation Analysis run analysis

• eda/mutpy_results.csv: Data for all files subjected to MA

• eda/per_suite.csv: MT metrics per suite

• eda/per_test.csv: MT metrics per test

• eda/per_mutant.csv: Mutant generation data

For the MA/MT inspected dataset (with reference_data/small_data set as default), output
files are generated for each LLM. For example:

/home/xtuchyna/git/gen-test-bench-simulation/reference_data/small_data/animation/test_deepseek_coder_animation_mutpy_output.txt

These output files are already available for the original Evaluation run, but will be overwritten
by your run.

Note: There are also two clean Jupyter notebooks: eda/MT_EDA.ipynb and eda/MA_EDA.ipynb.

Visualizations

eda/images contains all visualizations mentioned in the project.

Test Data

You can perform MA on test data first or a small subset. Modify the BASE_FOLDER variable in the
.env file (commented samples are provided).

ExperimentalMutPy Attached

An experimental fork of MutPy is included in the mutpy folder. Pipenv uses it directly for pip
installation.

See: https://github.com/xtuchyna/mutpy
Pull request: https://github.com/xtuchyna/mutpy/pull/1

ImportantNotes

Resource Hogs

Several scripts from the original Rosetta dataset may cause memory leaks or other issues. These
are stored in the reference_data/resource_hogs folder.

5

https://github.com/xtuchyna/mutpy
https://github.com/xtuchyna/mutpy/pull/1

Python Version Requirement

Experimental MA is supported only for Python 3.12 and above due to the use of addDuration()

in unittest runs. Docker is pre-configured with Python 3.12.

Common Issues

Spacy Download Error During Build:

ERROR: failed to solve: process "/bin/sh -c pipenv run python3.12 -m spacy download

en_core_web_sm" did not complete successfully: exit code: 1

Solution: Re-run the build command.

6

Evaluation
Metrics Correlations

Figure 1: Spearman correlation heatmap

New introduced metrics (Mutation Score and RAPFD) show positive moderate correlation to
classic code coverage metrics as Branch and Line coverage. Weak positive correlation is found
with respect to assertions density score and warnings count score. From previously computed
test adequacy metrics [4], Assertions McCabe Ratio Score asserts the weakest positive correla-
tion (although it is statistically insignificant for Mutation Score). Code length and line count
attributes of OI have strong non-monotonic correlations, however statistically insignificant. Due

7

to its design, RAPFD score depends heavily on Mutation Score and therefore strong monotonic
relationship is present. Clearly, passed and failed tests indicate strongly whether tests are of good
quality or not, specifically for failed tests. All of the resulting correlations can be seen in 1

Mutation Analysis

As shown in 2, MA was partially successful on selected Python dataset, with most test suites (per
each LLM) being able to be Mutation Tested. With respect to unsuccessful MA attempts, follow-
ing culprits are observed:

• User input dependent programs

• Resource hogs that killed the MA script

• Python errors that prevented a unittest run (such as ModuleImport errors due to incorrect
filename and etc.)

Based on overall number of results, each model is ranked in 1 with respect to each attribute indi-
cator (positive result - ranked most to least; negative result - ranked least to most).

Figure 2: MutPy run statistics per each model.
0: Success
1: Error

254: Error
TIMEOUT: Per-File MA exceeded time limit

8

LLM MA Success (S1) MA Timeout (S2) MA Errors (S3)

GPT 121 (1) 30 (1) 41 (2)
Gemini 113 (3) 35 (2) 48 (3)
DeepSeek 116 (2) 30 (1) 36 (1)

Table 1: MA results with corresponding S1,S2 and S3 ranks.

Mutation Testing

For all successful MA attempts (i.e. all valid test suite files), experimental MT provided multiple
insights per each investigated model. 3 shows overall aggregation of passed and failed unit tests
against OIs. Since this project uses test failures to its advantage (they are understood to be speci-
fications of original program set to fail), overall executed tests volume is ranked in 2, its indicator
being set to positive.

LLM OI Passed+Failed tests (S4)

GPT 614 (1)
Gemini 606 (2)
DeepSeek 599 (3)

Table 2: Score table S2.

Figure 3: Overall test passed and failed per each model

9

Overall MT outcomes per each model is shown in 4. Since the most meaningful information is
the number of killed and survived mutants, LLM models are ranked based on killed and survived
percentages with respect to all mutants generated of each LLM.

Figure 4: Overall mutants generated and their ratios per each LLM model

LLM Killed Mutants (S5) Survived Mutants (S6)

GPT 26% (3) 41% (3)
Gemini 38% (1) 27% (1)
DeepSeek 31% (2) 32% (2)

Table 3: Mutant Testing outcomes with models ranked

Distribution of the mutation scores is shown in 5, one boxplot per each investigated model.
Although Gemini and DeepSeek medians are close to each other, the lower IQR for DeepSeek
indicates worse performance. Models are ranked in 4

10

Figure 5: Boxplot showing the distribution of mutation scores per model. The box represents the in-
terquartile range (IQR), the line inside is the median, and whiskers extend to non-outlier min/-
max values.

LLM Achieved Mutation Score Median (S7)

GPT 40% (3)
Gemini 80% (1)
DeepSeek 67% (2)

Table 4: Mutation Score with ranking S7.

Distributions of real and random RAPFD scores can be seen in 7. Randomized variant always
performs slightly better than the real ordering. Since RAPFD metric depends heavily on Muta-
tion Score, each model is also ranked in 6 based on its own RAPFD performance against random-
ized version, shown in 7. Distance of random outcomes is computed with respect to their real
values and proportions for above (better than real RAPFD) and below (worse than real RAPFD)
are calculated. Better random RAPFD outcomes are therefore treated as a negative indicator.

11

Figure 6: Boxplots showing RAPFD vs Randomized RAPFD per model.

Figure 7: Random RAPFD with respect to its original RAPFD (sorted).

12

LLM Real RAPFD Median (S8) Better Random RAPFD out-
comes (S9)

GPT 8% (3) 55% (1)
Gemini 20% (1) 76% (3)
DeepSeek 13% (2) 60% (2)

Table 5: RAPFD related scores with rankings S8 and S9.

OverallModel Ranking

Borda count was calculated based on all aggregated scores and final ranks evaluated GPT to have
best overall performance, DeepSeek being the second best overall performance and Gemini to be
the last one.

LLM S1 S2 S3 S4 S5 S6 S7 S8 S9
∑

Final Rank

GPT 1 1 2 1 3 3 3 3 1 18 3
Gemini 3 2 3 2 1 1 1 1 3 17 (TB) 1
DeepSeek 2 1 1 3 2 2 2 2 2 17 2

Table 6: Final (Borda counted) LLM Rank. Gemini wins by Tie-Break

Results and impact

This project explored the feasibility of applying automated Mutation Anal- ysis (MA) to LLM-
generated test code, highlighting its advantages over traditional test adequacy metrics. While LLM
models can generate plau- sible test code that achieves reasonable results on conventional ade-
quacy measures, their practical fault-revealing potential is not guaranteed, especially considering
physical limitations and the availability of real test oracles. Best performing overall was Gemini,
which had also the highest mutation score achieved - 80%. Worst overall was GPT, even though
it seemingly generated the most runtime-adequate tests. DeepSeek emerges as an alternative in
the middle. Furthermore, this project experimented with novel approach of using test failures as
program specifications rather than unwanted errors to its advantage, which positively impacts the
analysis as broader scope of data that can be included, explored and analyzed. Experimental im-
plementation was successful and evaluation without known test oracles was possible. Modified
MutPy fork is available for python installation along with data and artificial testing examples to
verify the experimental setup using test differentiator (cosine similarity) enabling test failures to be
counted in Mutation Testing. New additional metrics were implemented as Per-Test and RAPFD
scores enabling testing benchmark to be extended. Per-Mutant statistics aggregation was also im-
plemented

13

Bibliography

Bibliography
1. A. Derezinska and K. Halas. “Experimental Evaluation of Mutation Testing Approaches to

Python Programs”. In: 2014 IEEE Seventh International Conference on Software Testing, Ver-
ification and Validation Workshops. 2014, pp. 156–164. doi: 10.1109/ICSTW.2014.24.

2. G. Rothermel, R. Untch, C. Chu, and M. Harrold. “Prioritizing test cases for regression
testing”. IEEE Transactions on Software Engineering 27:10, 2001, pp. 929–948. issn: 1939-
3520. doi: 10.1109/32.962562.

3. D. Shin and D.-H. Bae. A Theoretical Framework for Understanding Mutation-Based Testing
Methods. 2016. arXiv: 1601.06466 [cs.SE]. url: https://arxiv.org/abs/1601.06466.

4. A. Skysľaková. “Generating unit tests using LLM [online]”. SUPERVISOR : Marek Grác.
Diplomová práce. Masarykova univerzita, Fakulta informatiky, Brno, 2025 [cit. 2025-04-
20]. url: https://is.muni.cz/th/p4zjp/.

5. Z. Wang, C. Fang, L. Chen, and Z. Zhang. “A Revisit of Metrics for Test Case Prioritiza-
tion Problems”. International Journal of Software Engineering and Knowledge Engineering
30:08, 2020, pp. 1139–1167. doi: 10.1142/S0218194020500291. eprint: https://doi.org/10.
1142/S0218194020500291. url: https://doi.org/10.1142/S0218194020500291.

14

http://dx.doi.org/10.1109/ICSTW.2014.24
http://dx.doi.org/10.1109/32.962562
https://arxiv.org/abs/1601.06466
https://arxiv.org/abs/1601.06466
https://is.muni.cz/th/p4zjp/
http://dx.doi.org/10.1142/S0218194020500291
https://doi.org/10.1142/S0218194020500291
https://doi.org/10.1142/S0218194020500291
https://doi.org/10.1142/S0218194020500291

	Bibliography

