xView

Jakub Smatana, Ondrej Kuzlik
June 18th 2023

1 Description of the algorithm and theory, sim-
ilar projects

1.1 xView

The xView dataset (http://xviewdataset.org/)) is a large-scale satellite im-
agery dataset that was developed for object detection and localization tasks.
It was created to advance the development of computer vision algorithms and
systems for humanitarian and disaster response efforts.

The primary focus of the xView dataset is on detecting and localizing objects
of interest, such as buildings, vehicles, and other infrastructure elements, within
the satellite images. It includes annotations for over 60 object classes, including
aircraft, helipads, bridges, and more. The annotations are provided as bounding
boxes, indicating the location and extent of each object in the images.

1.2 Faster R-CNN

Faster R-CNN (Region-based Convolutional Neural Network) is an object de-
tection algorithm that builds upon the original R-CNN and its variants.

The key idea behind Faster R-CNN is to integrate the region proposal gen-
eration and object detection stages into a single end-to-end network. It achieves
this by introducing two main components: a Region Proposal Network (RPN)
and a Fast R-CNN network.

e Region Proposal Network (RPN): The Region Proposal Network (RPN) in
Faster R-CNN generates candidate object regions by sliding a window over
the image and predicting if there is an object present. These proposals
are then used for further processing in object detection.

e Region of Interest (Rol) Pooling: The proposed regions from the RPN are
used to extract fixed-sized feature maps from the convolutional feature
map using a technique called Rol pooling. These feature maps are then
fed into the next stage for classification and bounding box regression.

http://xviewdataset.org/

2 DESCRIPTION OF THE IMPLEMENTATION

e Fast R-CNN: The Fast R-CNN network takes the Rol feature maps as
input and performs object classification and bounding box regression. The
network is trained end-to-end using multi-task loss, which combines the
classification and regression losses.

1.3 Vision Transformer (ViT)

VisionTransformer is a neural architecture that utilizes attention layers to learn
relationships between parts of input images. A version of this architecture,
modified for object detection task, is more generally known as DETR (shorthand
for Detection with Transformers)|1].

The DETR model utilizes a convolutional backbone (most commonly ResNet)
with given pre-trained weights that is used to get feature maps from a given
input image. The feature maps are subsequently flattened to create a sequence
of them, which is then fed into the encoder. The encoder embeds these into
so-called object queries, which serve as positional encodings. Each encoding is
then added to the input of attention layers. The purpose of each object query
is to look for a particular object in the input. The output of the decoder is fed
into two detection heads, first is to classify each of the object queries into one
of the classes (or into a special no-class value, if the object does not fit any of
the known classes), the second is to perform bounding box regression.

The DETR uses bipartite matching loss, where each of the predicted queries
is matched with the best fitting ground truth class and bounding box. Subse-
quently, L1 and ToU loss are used to optimize the model.

1.4 Similar projects

Several projects attempting to use deep learning methods to detect objects in
satellite imagery already exist. Amongst the foremost and most cited one is
YOLT: You Only Look Twice, which uses an adapted version of the YOLO
algorithm [5]. Other approaches include various modifications to CNN based
approaches, most commonly using some version of R-CNN [3|. The goal of the
project was to attempt to recreate these attempts, as well as attempt to include
another, less used approach in Vision Transformers.

2 Description of the implementation

2.1 Faster R-CNN

The dataset consist of roughly 600 000 objects in 800 images of different sizes.
First training was done on the original pictures, but resized to 2400x2400. The
network as it was implemented had hard time to distinct small object so the
train images were then split to size 580x580 with some filtration of very small
objects.

The implementation of the Faster R-CNN is done in PyTorch library using
the tutorial on fine tuning the object detector[4]. MobileNetV2 features are used

3 INSTALLATION AND STARTUP INSTRUCTIONS

as a backbone and ROI Align as pooler. Furthermore some preprocessing was
done to images such as normalization, augmentations - collor jitter, grayscale,
gaussian blur, auto contrast. SGD was used as an optimizer with learning rate
scheduler to adjust learning rate during training.

Data were split into training, validation and testing dataset with 80:10:10
ratio. Training was performed on GPU for 20 epochs.

2.2 Vision Transformer

The same dataset was used to train the DETR. The implementation borrowed
from a Huggingface implementation of the DETR, utilizing the included pro-
cessor class to dynamically resize the images. During the project, it was discov-
ered that the architecture does not reliably work with a high amount of object
queries utilized, which led to the choice of a similar approach as in the R-CNN
implementation, with input images being split into smaller parts before being
processed. This was done in order to reduce the amount of objects per input
image to the architecture.

The used amount of object queries was 250, however, this number might also
have been too high and it could have been more optimal to stay at 100. How-
ever, this decision was taken in order to not having to split the image into
way too small parts, which would in turn lead into unachievable learning times
considering the long time periods the architecture needs.

The data were then split into a training and testing set, with the ratio used
being 80:20. As mentioned previously, time required to train the architecture
is long, especially considering the larger nature of inputs. Therefore, a default
period of 5 epochs was chosen for the training, with the potential of training for
more if the model showed potential.

3 Installation and startup instructions

3.1 Faster R-CNN

The train_pytorch.py file is the python script that was used for the training.
However, without the very large dataset that is not included in the files(only
small sample for testing) the training will not work. The model is included in
the models folder.

The evaluation can be done by running the faster-renn-results notebook with
all libraries installed. The requirements.tzt file can be used to install libraries.

3.2 Vision Transformer

No special installation necessary, aside from including the data in .tif format
inside a train_images directory, as well as the presence of the samples.csv file
in the work directory. All of these should be either included or available from
the xView dataset homepage at request. The model is then ready to be run by

4 DESCRIPTION AND RESULTS OF THE EVALUATION

simply running the cells in the notebook, however, be advised as it takes a long
time to run.

4 Description and results of the evaluation

4.1 Faster R-CNN

4.1.1 Image results

The results of the Faster R-CNN were really mixed. On the one hand, the
visual evaluation of the results were pretty decent. The model predicted objects
in places, where they were and in images with no objects returned also empty
prediction. However on the other hand, mAP score was terrible because there
were so many objects on each picture and the model was not guessing the classes
correct in some instances. Other reason for poor mAP score was a fact, that
the FPN network was not fine tuned as I expected it to be and some extra steps
could have been done to achieve better results.

In the result folder, I included side to side images of the prediction and
ground truth for some typical pictures. In some of the cases, the model predicted
classes like Bus instead of Truck or Building instead of Shed. These classes are
very similar and the evaluation is then completely ruined. However, if the
models is used to predict buildings, it works in decent fashion.

As T saved the model that was trained on objects that were larger then 8x8
pixels, it does not predict vast amount of small objects.

(a) Results of Faster R-CNN, ground truth on the left, predictions on the right

One of the biggest issues in the model was the class imbalance. In figure (a),
the Aircraft Hangar was mistaken for Building and Helipad for Storage Tank.

4 DESCRIPTION AND RESULTS OF THE EVALUATION

(b) Results of Faster R-CNN, ground truth on the left, predictions on the right

As you can see in the figure (b), the model predicted some Buldings that
were not in ground truth, but had decent success with predicting the Small
Cars.

(c¢) Results of Faster R-CNN, ground truth on the left, predictions on the right

The figure (c) shows that the Buldings can be predicted with high accuracy,
the problem is with the classes that have small sample size.

4 DESCRIPTION AND RESULTS OF THE EVALUATION

4.1.2 Metric results

MAP = 10.16%

Passenger_CargoPlane
PassengerCar
SmallCar

HaulTruck

StorageTan
Pylon

Excavator
Cargo_ContainerCar
TontainerShip
Shippingcontainerlot
TruckTractorw_BoxTrailer
Tugboat
SmallAircraft
Motorboat
DumpTruck

Bus

Sailboat
ConstructionSite
Frontloader_Bulldozer
Truck

MaritimeVessel
FishingVessel

Ferry

VehicleLot
EngineeringVehicle
Trailer 41 0.01

DamagedBuilding 4 0.01
ShippingContainer 0.00
Facility 4 0.00

CargoTruck - .00

Utility Truck - 0.00
MobileCrane +0.00
TruckTractorw_LiquidTank ©-00
TruckTractorw_FlatbedTrailer -0.00
TruckTractor 4 0.00
Towercrane 0.00
Tower - 0.00

Tankcar 0.00
StraddleCarrier 40.00
Shed +0.00
Scraper_Tractor 40.00
ReachStacker +0.00
RailwayVehicle 40.00
PickupTruck ©.00
PassengerVehicle 40.00
OilTanker 4 0.00
Locomotive 10.00
Hut_Tent -0.00

Helipad +0.00
Helicopter 40.00
GroundGrader +0.00
FlatCar - 0.00
Fixed-wingAircraft 4 0.00
CraneTruck +0.00
ContainerCrane - 0.00
CementMixer - 0.00
Barge 40.00
AircraftHangar - 0.00

00 01 02 03 04 05 06 07
Average Precision

(d) mAP score over all classes

The overall mAP score over all classes with ToU threshold of 0.5 was 10.16%.
The biggest reason of such a low mAP score was the class imbalance, which I
was not able to overcome. But to sum it up, this very simple model works quite
well, even though it has some simple parts as the image cropping or the class
imbalance issues. The mAP score was calculated with external github code.

4 DESCRIPTION AND RESULTS OF THE EVALUATION

4.2 Vision Transformer

The implementation of the Vision Transformer was unfortunately more under-
whelming than initially hoped. At first, I wanted to evaluate the basic trans-
former architecture, however, I switched to the DETR one since it was more
attuned to the task at hand and there was not any work done using this archi-
tecture that I could readily find at the time.

Due to the unavailability of decent models of this kind in this area, the
choice of the predetermined weights for the convolutional backbone of DETR
was decided using a 'what works best’ approach, ending up being the weights
for the ResNet implemented in the original DETR paper. This also meant
borrowing the same weights for the learnable parameters within transformers,
determining that while they were not perfect for the task, they served as a better
starting point than random weight initialization.

However, the results of this model, after learning for several epochs, have

been quite bad. Utilizing the aforementioned processor classes methods for pro-
cessing the output of the model, one can obtain information about the predicted
bounding boxes, as well as the confidence scores for them. However, despite the
training loss decreasing steadily throughout training, the resulting boxes all
suffered from having low confidence (which even slowly decreased as the model
learned for longer). Overall, the confidence scores of the ViT model, calculated
by Ppredicted_class * Ppredicted-box_has-object WaS Ol’lly 0.26.
In my approach, I have also tried utilizing the aforementioned external tool
for evaluation of mAP score. As may have been indicated by the confidence
scores, the results of this tool have also been very subpar, with it reaching a
2.1% score. The reason for this is the general low performance of the model.

(d) Unsatisfying results of DETR model, ground truth on the left, predictions
on the right

The results lead me to unfortunately have to consider this attempt at the
implementation a failure. There are few key points to consider when trying
to implement this successfully: getting sufficient computational power and re-
sources to run this for many more epochs, as well as considering adding more
augmentations to the data. Another approach would be to attempt to either

4 DESCRIPTION AND RESULTS OF THE EVALUATION

find better fitting weights for the convolutional backbone (or even attempt to
use the convolutional layers from the other part of the project) and for the Vi-
sionTransformer itself, which would prove to be a better starting point, thus
potentially reducing the required amount of time to learn better.

Consideration might also be given to another choice of learning function.
While the bipartite loss used by the DETR model should theoretically work
well, the model quite struggled with lots of small objects overlapping each other,
ending up not regressing to any general kind of box.

In the end, T also think I went in over my head with this attempt. No
experience with this kind of model has shown it to be rather difficult to debug,
leading to lots of mistakes hindering the learning and progress. Having better
insight into the model might also be useful in finetuning the project, though
bettering the insight can also be considered one of the more successful outcomes
of the project.

REFERENCES

References

1]

EERS

Nicolas Carion et al. “End-to-end object detection with transformers”. In:
Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK,
August 28-28, 2020, Proceedings, Part I 16. Springer. 2020, pp. 213-229.

Cartucho. mAP. https://github.com/Cartucho/mAP. 2018.

Austen Groener, Gary Chern, and Mark Pritt. “A comparison of deep learn-
ing object detection models for satellite imagery”. In: 2019 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR). IEEE. 2019, pp. 1-10.

PyTorch. TORCHVISION OBJECT DETECTION FINETUNING TU-
TORIAL.https://pytorch.org/tutorials/intermediate/torchvision_
tutorial.htmll 2023.

Adam Van Etten. “You only look twice: Rapid multi-scale object detection
in satellite imagery”. In: arXiv preprint arXiv:1805.09512 (2018).

https://github.com/Cartucho/mAP
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html

	Description of the algorithm and theory, similar projects
	xView
	Faster R-CNN
	Vision Transformer (ViT)
	Similar projects

	Description of the implementation
	Faster R-CNN
	Vision Transformer

	Installation and startup instructions
	Faster R-CNN
	Vision Transformer

	Description and results of the evaluation
	Faster R-CNN
	Image results
	Metric results

	Vision Transformer

