
Rust Reinforcement Learning Framework

Overview

A modular and extensible reinforcement learning framework written in Rust, supporting algorithms such as
Q-Learning, SARSA, MCTS, AlphaZero, and MuZero. This project allows benchmarking across different
environments like CartPole and MountainCar with a unified interface.

Description of the Algorithms and Theory

This project implements the following reinforcement learning (RL) algorithms.
(For more information, see the RL book: http://incompleteideas.net/book/the-book.html or Alp-

haZero paper: https://arxiv.org/abs/1911.08265)

• Q-Learning: A model-free off-policy RL algorithm that learns the value of action-state pairs (Q-
values) using the Bellman equation. It chooses actions greedily based on learned Q-values.

• SARSA: An on-policy variant of Q-Learning. It updates its Q-values using the action actually taken,
rather than the maximum possible next action. (In contrast to Q-Learning, which always assumes the
agent will act optimally.)

• Monte Carlo Tree Search (MCTS): A search-based planning algorithm using tree expansion guided
by simulations. It builds a tree using selection, expansion, simulation, and backpropagation to evaluate
actions in large state spaces. Not a learning algorithm per se.

• AlphaZero: A deep RL algorithm that integrates MCTS with a neural network-based value and
policy model, trained from self-play, improving over time with gradient-based learning. The original
AlphaZero uses a shared network with a value and a policy head. The policy head is used inside the
MCTS to give priority to better nodes without needing to explore them. In my experiments this didn’t
lead to good results, so I just use the value head.

• MuZero: An extension of AlphaZero that does not require a model of the environment’s dynamics.
Instead, it learns a latent space representation and internal transition model from raw observations,
combining planning with model learning. Due to training difficulties steming from the compexity of
this algorithm, this implementation is a full MuZero, but only partial. The dynamics network is not
used in the MCTS, since I could not get it to train properly.

Description of the Implementation

The project is structured into following modules:

• environment: Trait-based interface for RL environments (CartPole, MountainCar) that handle step
logic and state transitions.

• agent: Abstractions and concrete implementations for all agent types.

1

http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1911.08265


• logger: Handles training logs, reward tracking, data export, and plotting.

• rl agent: Shared agent behavior like training, benchmarking, and evaluation.

• qlearning, sarsa, mcts, alphazero, muzero: Algorithm-specific logic and data structures.

• main.rs: Entry point handling CLI arguments, initializing environments/agents, and managing train-
ing and evaluation.

Each agent conforms to a common Agent trait, ensuring interchangeable benchmarking and training
pipelines.

Environments

The environments are based on the standard RL gymnasium used for benchmarking (https://gymnasium.farama.org/).
The specific implementation is a fork of the RL gym for Rust and modified for my use case.

The framework currently supports the following environments:

• CartPole

https://gymnasium.farama.org/environments/classic_control/cart_pole/

This environment tries to balance a stick on a 2D moving car. Reward is based on the duration of
”balancing”. I also added a reward for the stability of the stick, i.e. penalizing moving away from the
center and large velocity of the car and large angular velocity of the stick. This made training easier
and quicker.

The modified reward function is calculated as:

rt = C ·
(
1− |vt|

vmax

)
·

(
1− |θ̇t|

θ̇max

)
·
(
1− |xt|

xmax

)
(1)

where:

– rt is the reward at time step t

– C is a constant base reward (e.g., 1)

– vt is the cart’s linear velocity

– vmax is the maximum considered linear velocity

– θ̇t is the angular velocity of the pole

– θ̇max is the maximum considered angular velocity

– xt is the cart’s position

– xmax is the maximum allowed position displacement from center

2

https://gymnasium.farama.org/
https://github.com/MathisWellmann/gym-rs
https://gymnasium.farama.org/environments/classic_control/cart_pole/


If the stick reaches large absolute value of the angle or large distance from the centre, the episode ends
and a large negative reward (e.g. -100) is given.

The episode’s maximum step count is set to a constant value (e.g. 100) and no additional reward is
given at the end of a successful episode.

• MountainCar

https://gymnasium.farama.org/environments/classic_control/mountain_car/

I tried to also add other environments to my RL framework, such as Mountain Car, but I encountered
difficulties with this environment. Additional fine-tuning of the Rust implementation would be required
or building the environment from scratch in Rust to make this environment work and train well.
Currently only QLearning/Sarsa produce some results after a long training period.

Results

Results were obtained by running each agent until convergence on the CartPole environment. Only runs
where the reward function improved were considered. The average rewards were calculated over 10 runs for
each agent.

The reward at each timestep is calculated as described above. Since I’m using my own modified version
of the cartpole environment, the numbers are arbitrary and should only be compared relative to each other.

Agent Avg Reward (10 runs)

QLearning 1011.2
SARSA 953.8
MCTS 921.3
AlphaZero 1192.0
MuZero 923.0

Example Plots

Plots below show performance during training. Each entry in the plot represents a total reward of the episode
for a given episode number.

1. Qlearning / SARSA

3

https://gymnasium.farama.org/environments/classic_control/mountain_car/


2. MCTS

since MCTS is not a training algorithm, the plot below shows just a benchmark of runs, i.e. no
improvement is expected over the increase in episode counts.

3. AlphaZero

4. MuZero

4



Installation and Startup Instructions

Prerequisites

• Rust (edition 2024 or newer)

Example Running the Application

cargo run −r −p mcrs2 −− s a r sa −−ep i s ode s 2000

CLI Help

cargo run −r −p mcrs2 −− −−help

5


