
QuickNav-RL: Navigation using Reinforcement

Learning in JAX

Hugo Adamove1, Jakub Pekár2
1492982
2492788

1 Introduction

Reinforcement-learning (RL) agents learn by stepping through simulated worlds,
so called ”environments”, yet most of these academic environments are written
in NumPy [1] and run on the CPU [2]. At the same time the agent network(s)
and optimizer already sit on the GPU, so every step involves costly copies be-
tween the devices and synchronization. Multiple authors identify this ”CPU-
environment + GPU-agent” split as today’s dominant bottleneck and show that
moving the environment to the accelerator can yield 10–1000 times speed-ups
[2].

JAX [3] allows us to eliminate the CPU-GPU split. Its jit, vmap and pmap
primitives compile pure-function environments into fused GPU kernels, and let
training and environment simulation share the same device. Earlier projects
such as Brax [4], Gymnax [5], Pgx [6] and JaxMARL [7] demonstrate the approach
across continuous control, Atari-like 2-D games and multi-agent benchmarks,
reporting 10× to 1000× wall-clock gains compared to NumPy environments [6].

Building on these results, we set three goals for our project:

1. Implement QuickNav-RL - a room navigation environment written en-
tirely in JAX.

2. Re-implement the identical environment in NumPy and measure throughput
(steps/s) to compare against the JAX version and confirm the performance
improvement.

3. Evaluate multiple RL algorithms (PPO [8], SAC [9], TD3 [10]) and agent
network architectures (MLP [11], LSTM [12], GTrXL [13]) on our JAX

QuickNav environment.

1

2 Related Work

Popular RL environment libraries like OpenAI Gym [14], Gymnasium [15], and
PettingZoo [16] use Python and NumPy but lack efficient batching and hard-
ware acceleration. High-performance alternatives include NVIDIA Isaac Lab

[17], which relies on CUDA for parallelism, and Brax, a JAX-based physics engine
using JIT compilation and vectorization. Isaac Gym demands CUDA-specific
engineering, while Brax integrates more easily with TPUs and GPUs.

Within the domain of 2D point-to-point navigation, a notable example is
MiniGrid [18], a widely used library offering configurable grid-world environ-
ments where agents navigate mazes to reach a goal, primarily designed for CPU-
based research with discrete state and action spaces.

Another relevant project is the DRL-robot-navigation repository on GitHub
[19], which we heavily drew inspiration from. This project implements training
of mobile robots in simulated 2D environments using various DRL algorithms
(like TD3, SAC, PPO, DDPG) with ROS [20] and Gazebo [21], or a simpler
Python-based simulator (IR-SIM [22]). It demonstrates practical robot navi-
gation to random goal points while avoiding obstacles, often using LiDAR-like
sensor inputs.

3 Methods

Environment Design

The environment consists of a two-dimensional square room with configurable
dimensions (in meters), enclosed by walls that act as static obstacles. The
spatial resolution of the environment grid defines the granularity of obstacle
placement and determines the smallest unit of wall or free space.

The simulated robot is equipped with differential drive (two wheels) and
a 2D lidar sensor. Several physical and sensory parameters are configurable,
including the robot’s body size, wheelbase, maximum linear speed, the number
of lidar beams, their angular spread (field of view), and the maximum sensing
distance. Each episode begins by spawning the robot at a random free-space
location within the room, with a randomly placed target the agent is required
to reach. To make the task more challenging, multiple potential target locations
are initially sampled, and the one farthest from the robot is selected.

Procedural Room Generation

To introduce variation and improve generalization, each episode features a pro-
cedurally generated room layout. We implemented a simple randomized wall-
carving algorithm based on a stochastic grid walk [23].

The generation process begins with a grid filled entirely with wall tiles. A
carving agent, initialized at the center of the grid, performs a random walk,
converting wall tiles into free space as it moves. At each step, the agent chooses
one of four directions (up, down, left, right) uniformly at random. Additionally,

2

with a small probability (e.g., 5%), the agent may return to the origin. The
process terminates once a desired percentage of free space is reached or after a
maximum number of steps. A visualization of this process is shown in Figure 1.

Grid Size
Ratio of tiles carved-out

0.05 0.15 0.3

8 × 8

16 × 16

Figure 1: Iterative generation of room environments for various grid sizes of the
room. The algorithm iteratively carves out tiles using random walk algorithm.

Lidar Sensor Simulation

A key component of the agent’s observation space is its simulated 2D lidar sen-
sor, which provides depth and object-type information in the robot’s immediate
vicinity. The lidar emits a number of rays beams uniformly spaced within a
specified field of view. Both the number of ray beams and maximum range of
the lidar are configurable through environment settings.

Each ray is cast from the robot’s current position and direction, computing
intersections with all nearby obstacles and the target goal as shown in Figure 2.
For each ray, the environment records the distance to the nearest intersection
(up to the sensor’s maximum range—along) with the type of object intersected
(obstacle, goal, or empty space).

Agent Observations

The agent receives structured observations at each timestep, which serve as
inputs to its reinforcement learning policy. These observations are designed to
capture essential spatial and sensory information to support navigation under
partial observability.

In our setup, each observation consists of three main components:

3

Figure 2: A visualization of the lidar sensor’s beams, showing 16 beams with
a 10-meter maximum range. Grey rays indicate that the lidar did not detect
any obstacles, red rays represent intersections with obstacles, and green rays
indicate that the lidar has detected the goal.

• Ego-Position Information: The agent’s current pose is provided as a
tuple of its (x, y) coordinates and orientation angle θ within the environ-
ment frame. This allows the policy to track self-localization over time.

• Lidar Readings: A fixed-length vector representing the distances mea-
sured by the simulated lidar beams, capturing the layout of nearby ob-
stacles and indicating the presence of the goal if detected along any ray.
Each beam returns the normalized distance to the closest intersecting ob-
ject within its range, along with an optional type label (e.g., obstacle or
goal).

• Agent’s Memory: An internal memory vector is maintained and up-
dated at each timestep. This allows the agent to accumulate information
over time, enabling it to reason beyond the current observation—crucial
for navigation in environments with occlusions and ambiguous layouts.

The combination of positional, sensory, and temporal information enables
the agent to plan and adapt its behavior as it explores and approaches the goal.

Agent Actions

The agent controls its movement through a simple differential drive mechanism.
The action space consists of two continuous values, each representing the nor-
malized velocity (in the range [−1, 1]) of the left and right wheels, respectively.
These values are scaled by a predefined maximum wheel speed.

4

This action representation allows the agent to perform a variety of maneu-
vers: moving forward or backward, turning in place, or executing smooth curves.
The simplicity of this low-level control model keeps the action space minimal
while preserving sufficient expressiveness for learning complex navigation strate-
gies.

Rewards & Penalization

At each timestep, the agent receives a scalar reward signal that reflects its
progress toward the navigation goal, while also incorporating various forms of
penalization to discourage undesirable behavior.

The reward function is defined as a weighted sum of individual components,
with the following key elements:

• Wall Collision Penalty (λw): The agent incurs a negative reward if the
action would cause its body to intersects with any wall segment, encour-
aging obstacle avoidance.

• Step Penalty (λs): A small constant penalty is applied at every timestep
to incentivize efficient solutions and discourage unnecessary wandering or
stalling.

• Cycle Penalty (λc): To prevent the agent from revisiting the same loca-
tions, it is penalized whenever it returns to a previously visited position.
This promotes exploration.

• Progress Reward (λp): If the agent’s distance to the goal decreases
compared to the previous timestep, a positive reward proportional to the
progress is granted. Conversely, if the agent moves farther from the goal,
it receives a negative reward of the same magnitude.

• Goal Reward (λg): A large positive reward is assigned when the agent
successfully reaches the target goal location, serving as the primary train-
ing signal for completing the navigation task.

Formally, the total reward rt at timestep t can be expressed as:

rt = −λs−Iwall collision·λw−min(

t∑
0

Icyclingt , 10)·λc+sign(dt−1−dt)·λp+Igoal reached·λg

where dt denotes the distance to the goal at time t, and the indicator functions
(I) evaluate to 1 when the corresponding event occurs. The specific setup of λ
parameters is denoted in the section 4.

RL Algorithms

To train our reinforcement learning agents, we employed a range of modern
policy optimization algorithms, each representing a distinct design philosophy
in terms of exploration, stability, and sample efficiency. We summarize the
selected three widely used optimization strategies below:

5

Proximal Policy Optimization (PPO) PPO is an on-policy policy gradi-
ent method that stabilizes learning by limiting the magnitude of policy updates.
It achieves this through a clipped surrogate objective that prevents large devia-
tions from the current policy, thereby reducing the risk of performance collapse.

PPO strikes a balance between ease of implementation, training stability,
and performance. It is particularly popular in benchmarks due to its robustness
across a range of tasks.

• Type: On-policy, policy gradient

• Key Idea: Clipped objective function to prevent drastic policy updates

• Advantages: Simpler and more stable than TRPO; general-purpose ap-
plicability

Soft Actor-Critic (SAC) SAC is an off-policy actor-critic algorithm based
on the maximum entropy reinforcement learning framework. It seeks to simul-
taneously maximize the expected return and policy entropy, thereby promoting
stochastic policies that explore more effectively.

Due to its off-policy nature and entropy regularization, SAC is highly sample-
efficient and well-suited to continuous action spaces, making it an excellent fit
for robotics and navigation tasks.

• Type: Off-policy, stochastic actor-critic

• Key Idea: Encourages exploration via entropy maximization

• Advantages: High sample efficiency; stable training in continuous control
settings

Twin Delayed Deep Deterministic Policy Gradient (TD3) TD3 builds
upon the DDPG algorithm by addressing its known overestimation bias and
training instability. It introduces three major innovations: using two Q-networks
to take the minimum value estimate (twin critics), delaying policy updates rel-
ative to value function updates, and applying noise to the target policy for
smoothing.

TD3 operates with deterministic policies, making it suitable for environ-
ments with relatively low stochasticity and where fine control precision is im-
portant.

• Type: Off-policy, deterministic actor-critic

• Key Idea: Addresses overestimation bias through twin critics and delayed
updates

• Advantages: More stable than DDPG; effective in low-noise, continuous
control domains

6

Each of these optimization strategies brings distinct strengths, and their
comparative evaluation in our environment highlights trade-offs between explo-
ration, convergence speed, and robustness in navigation under partial observ-
ability.

Implementation Details: The implementations of these algorithms are sourced
from the rejax project [24], which provides efficient and flexible reinforcement
learning algorithms in JAX. The environment conforms to the gymnax [5] API,
ensuring compatibility with rejax and other JAX-based reinforcement learning
libraries.

Models

To evaluate the impact of memory mechanisms on navigation performance in
partially observable environments, we implemented and compared three distinct
agent architectures: a simple Multi-Layer Perceptron (MLP), a Long Short-
Term Memory (LSTM) network, and a Gated Transformer-XL (GTrXL)-based
model.

MLP

The MLP model serves as a strong baseline for memory-free or minimal-memory
navigation. Despite its simplicity, such architectures are often sufficient for
reactive behaviors and short-term decision-making in structured environments.

To provide the MLP with limited temporal reasoning, we extended the archi-
tecture with a lightweight external memory. The model consists of a standard
feedforward backbone followed by two output heads:

• Action Head: Predicts actions.

• Memory Head: Produces an updated memory vector to be passed into
the next timestep.

At each timestep, the model receives as input a concatenation of the current
observation vector and the memory vector from the previous step. This allows
it to maintain a compressed representation of its past states, although in a less
sophisticated manner than recurrent or transformer-based models.

LSTM

The LSTM model introduces an explicit mechanism for temporal memory, en-
abling the agent to reason over extended sequences of past observations. LSTMs
are a well-established choice for tasks involving partial observability, where deci-
sions must be informed by a history of inputs rather than the current state alone.
Our LSTM-based architecture consists of a multi-layer LSTM module with a
fixed hidden state dimensionality. Specifically, each LSTM layer maintains a

7

hidden state vector ht and a cell state vector ct, both of which constitute the
agent’s memory and are propagated forward through time. The LSTM layers
process sequences of input vectors formed by the concatenation of the agent’s
current observation and the previous memory state. Following the recurrent
layers, the output hidden state of the final LSTM layer is passed through a fully
connected (dense) layer to produce the action predictions.

GTrXL

GTrXL is a transformer architecture tailored for reinforcement learning. It
builds on Transformer-XL by introducing gating mechanisms in place of residual
connections to improve training stability and long-term memory handling—key
issues in RL due to non-stationary targets and partial observability. The model
retains segment-level recurrence and attention over memory, while gates regulate
information flow, enabling better convergence in tasks like MiniGrid and Atari.
The actions are obtained using simple linear layer attached to the outputs of
the transformer model.

4 Experiments & Setups

Project Setup

The project is designed to be easily reproducible and straightforward to install,
leveraging modern Python dependency management tools. Specifically, it uses
the uv package manager, which enables fast and deterministic environment setup
through the use of pyproject.toml and uv.lock files.

To set up the project environment, users first need to install uv. Below are
the platform-specific installation instructions:

macOS:

On macOS, you can install uv using Homebrew:

brew install uv

Linux:

curl -sSL https://install.uv.sh | bash

Windows (via winget):

winget install uv

Setting Up the Python Environment

Once uv is installed, create a complete Python virtual environment under ".venv"
directory with all necessary dependencies by executing the following command:

8

uv sync

Enabling CUDA for GPU Support

If your device has a GPU with CUDA support, you can enable it during the
environment setup to make training significantly faster by running:

uv sync --extra cuda

Jupyter Notebooks

The repository contains multiple examples in the form of Jupyter notebook
files under "./examples" directory. When selecting a kernel for the notebook
execution, ensure that you select the .venv kernel. This will ensure that all
required dependencies from the virtual environment are present for seamless
execution of the notebooks.

Implementation Details

Environment

For all experiments, we standardized the environment configuration to ensure
fair comparison across models. Each room was set to a size of 8m× 8m, with a
grid resolution of 16 cells in each dimension. This results in a grid cell size of
0.5m× 0.5m, which defines the minimum possible width of any corridor or gap
between obstacles.

We employed a procedural room generation algorithm with a carved percent-
age of 80%, producing rooms of moderate complexity. Representative examples
of generated layouts can be seen in Figure 1.

The simulated robot agent was configured with a radius of 15 cm (i.e., total
width of 30 cm), ensuring that it can navigate all valid passages without collision.
The robot’s maximum linear speed was limited to 1m/s.

Rewards & Penalties

Unless otherwise specified, all experiments used the following default reward
and penalization setup: λc = 0, λp = 1, λs = 0.1, λw = 10 and λg = 50.

Models

• MLP: The architecture of the MLP backbone—including the number of
layers and neurons per layer—was treated as a hyperparameter during
optimization. Each layer was followed by a ReLU activation function and
a dropout layer with a rate of 0.5 to encourage regularization. The memory
vector had a fixed dimensionality of 32 and was initialized with zeros at
the start of each episode.

9

• LSTM: The dimensionality of the LSTM network, including the number
of layers and the sizes of the hidden state ht and cell state ct, was optimized
during hyperparameter search. The output from the final LSTM layer was
passed through a fully connected layer to produce the action distribution.
Memory is represented implicitly via the LSTM’s internal recurrent states,
which were initialized to zero vectors at the beginning of each episode.

• GTrXL: For the GTrXL model, we fixed the memory size to 32 and the
number of attention heads to 2. During hyperparameter optimization, we
searched for the optimal embedding size, attention head dimensionality,
and the number of transformer layers. The memory was also initialized
with zeros.

5 Results

JAX vs NumPy Performance Comparison

We first investigate the performance benefits of using a vectorized JAX-based en-
vironment compared to a traditional NumPy-based implementation. The primary
goal of this experiment is to evaluate raw simulation throughput independently
of model learning.

To isolate the computational performance of the environments, we replaced
the policy model with a random action generator. We measured the total time
required to execute 100,000 environment steps. To assess how environment com-
plexity impacts performance, we varied the grid size across three configurations:
4 × 4, 8 × 8, and 16 × 16.

Figure 3 presents the wall-clock times for both implementations. As ex-
pected, the JAX-based environment demonstrates a significant speed advantage.

Hypothesis: With increased environment size, the LiDAR collision detection
code becomes the main bottleneck and benefits the most from vectorization.
This is because, as the grid size grows, the number of potential collision checks
increases, and the efficiency gains from vectorizing these operations become
more pronounced.

RL Algorithms Comparison & Tuning

Following the environment performance evaluation, we assessed the effectiveness
of three prominent reinforcement learning algorithms: PPO, SAC, and TD3.
Our objective was to evaluate their relative performance under a controlled
setting using a shared network architecture. We employed a simple 2-layer
MLP architecture with 128 neurons per layer and no memory mechanism. To
compensate for the absence of recurrent or external memory, the agent was given
direct access to the goal coordinates as part of its observation space.

To ensure a fair comparison, we conducted a hyperparameter optimization
for each algorithm using the Optuna framework. Each algorithm underwent

10

Figure 3: Wall-clock time (in seconds) of 100,000 steps for JAX vs. NumPy envi-
ronments across different room sizes. JAX shows consistently faster performance,
especially in larger environments.

200 optimization trials. The search objective was to maximize the mean reward
over 10 training episodes, serving as a proxy for early learning performance in
partially observable navigation scenarios.

The final optimized hyperparameter configurations for each algorithm as well
as the search spaces are summarized in section 6.

To assess the practical effectiveness of the tuned algorithms, we further eval-
uated the mean reward and standard deviation achieved on a held-out test set
using the best hyperparameter settings found in the Optuna search. These re-
sults are presented in Table 1. They reflect the stability and generalizability of
each algorithm under partially observable conditions with a memoryless MLP
model. The training curves of these algorithms are presented in section 6.

Table 1: Test set performance for PPO, SAC, and TD3 using the best hyperpa-
rameters found via Optuna. Each value represents the mean reward ± standard
deviation over 10 evaluation episodes.

Algorithm Mean Reward ± Std. Dev. (higher is better)

PPO 96.87 ± 8.50
SAC 73.52 ± 51.59
TD3 85.99 ± 36.22

The results suggest that PPO achieved the most stable and highest-performing

11

behavior in this simplified setting, followed by TD3 and SAC. We note that the
absence of memory limits long-term reasoning, so these findings mainly reflect
the ability of each algorithm to exploit short-term and spatial cues under a
consistent policy gradient framework.

Model Comparison & Tuning

Building on the results from the simplified setup, we proceeded to evaluate the
capabilities of advanced models equipped with memory mechanisms. In this
phase, we removed the goal position from the observation space to simulate a
more realistic partially observable environment. Agents were required to nav-
igate using only LiDAR readings, their current position, and internal memory
representations.

Based on earlier experiments, we selected PPO as the sole optimization al-
gorithm for this stage, as it consistently demonstrated superior performance in
our benchmarks. Given the significant impact of the reward function on learn-
ing behavior, we extended the tuning process beyond model architecture
(e.g., number of layers, layer size) to include critical reward and penalty
parameters: step penalty (λs), progress reward (λp), and collision penalty
(λc).

We used the PPO hyperparameters obtained from the previous hyperparam-
eter search. Since the reward function was under active tuning, we selected the
mean number of steps required to reach the goal as the main optimization
objective, as it is independent of reward scales. Hyperparameter optimization
was implemented using Optuna across 100 trials per model. The final reward
and penalty configurations as well as the search space are summarized in Ap-
pendix 6.

Table 2 reports the mean number of steps required to reach the goal on
the test set for each tuned model. The LSTM model achieved the best perfor-
mance, demonstrating the effectiveness of recurrent memory in partially observ-
able settings. While the GTrXL model is theoretically expected to outperform
recurrent networks due to its attention-based architecture and longer memory
horizon, practical constraints on available hardware limited the model size we
were able to train, likely contributing to the suboptimal performance observed
in our experiments.

Table 2: Test set performance: mean number of steps to finish an episode (±
standard deviation) over 10 evaluation episodes for each algorithm using the
best hyperparameters found via Optuna.

Algorithm Mean Steps ± Std. Dev. (lower is better)

MLP 214.61 ± 94.53
LSTM 126.60 ± 75.71
GTrXL 133.90 ± 88.94

12

6 Conclusion

In this work, we developed a lightweight yet flexible JAX-based vectorized en-
vironment for robotic navigation using LiDAR in procedurally generated room
layouts. The environment design allows for fully customizable parameters in-
cluding room size, grid resolution, obstacle density, and sensor configuration.

We demonstrated that the JAX implementation offers significant performance
benefits over a traditional NumPy-based approach, particularly as environment
complexity increases. This makes it well-suited for scalable training and exper-
imentation in RL research.

To evaluate control strategies, we benchmarked three prominent RL algo-
rithms—PPO, SAC, and TD3—under a simplified setup using a memoryless
MLP model. PPO consistently outperformed the others in terms of stability
and average reward, highlighting its robustness for navigation tasks even in
partially observable environments.

Furthermore, we developed and evaluated three distinct agent architectures
implemented in Flax: an MLP with lightweight external memory, a multi-layer
LSTM, and a Gated Transformer-XL (GTrXL). These models were assessed
on the full navigation task, which required reasoning over sparse LiDAR ob-
servations and leveraging internal memory mechanisms. Among the evaluated
models, the LSTM achieved the best overall performance. While the GTrXL
architecture holds promise due to its ability to model long-term dependencies
through attention mechanisms, our experiments were constrained by limited
hardware resources, which prevented the training of larger, more expressive
transformer models. This limitation likely contributed to the subpar perfor-
mance observed for the GTrXL in our setting.

The full codebase is publicly available at: https://github.com/hadamove/
quicknav-rl

13

https://github.com/hadamove/quicknav-rl
https://github.com/hadamove/quicknav-rl

References

[1] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, September
2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/

s41586-020-2649-2.

[2] Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez,
Miles Macklin, and Dieter Fox. Gpu-accelerated robotic simulation for
distributed reinforcement learning, 2018. URL https://arxiv.org/abs/

1810.05762.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake Van-
derPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-
formations of Python+NumPy programs, 2018. URL http://github.com/

jax-ml/jax.

[4] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mor-
datch, and Olivier Bachem. Brax - a differentiable physics engine for large
scale rigid body simulation, 2021. URL http://github.com/google/brax.

[5] Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning envi-
ronment library, 2022. URL http://github.com/RobertTLange/gymnax.

[6] Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo
Habara, Haruka Kita, and Shin Ishii. Pgx: Hardware-accelerated parallel
game simulators for reinforcement learning, 2024. URL https://arxiv.

org/abs/2303.17503.

[7] Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, An-
drei Lupu, Garar Ingvarsson, Timon Willi, Ravi Hammond, Akbir Khan,
Christian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopad-
hyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon
Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and
Jakob Nicolaus Foerster. Jaxmarl: Multi-agent rl environments and al-
gorithms in jax. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017. URL https://

arxiv.org/abs/1707.06347.

14

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/1810.05762
https://arxiv.org/abs/1810.05762
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://github.com/google/brax
http://github.com/RobertTLange/gymnax
https://arxiv.org/abs/2303.17503
https://arxiv.org/abs/2303.17503
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor, 2018. URL https://arxiv.org/abs/1801.01290.

[10] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods, 2018. URL https://arxiv.

org/abs/1802.09477.

[11] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536,
1986. doi: 10.1038/323533a0.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[13] Emilio Parisotto, Francis Song, Jack W. Rae, Razvan Pascanu, Caglar
Gulcehre, Siddhant M. Jayakumar, et al. Stabilizing transformers for re-
inforcement learning. In Proceedings of the 37th International Conference
on Machine Learning, pages 7487–7498, 2020.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016. URL
https://arxiv.org/abs/1606.01540.

[15] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gian-
luca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus
Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schul-
hoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A
standard interface for reinforcement learning environments, 2024. URL
https://arxiv.org/abs/2407.17032.

[16] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth
Hari, Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch,
Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for multi-agent reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:
15032–15043, 2021.

[17] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David
Hoeller, Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay
Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and Animesh Garg.
Orbit: A unified simulation framework for interactive robot learning envi-
ronments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023.
doi: 10.1109/LRA.2023.3270034.

[18] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-
Vicente, Lucas Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro,
and Jordan Terry. Minigrid & miniworld: Modular & customizable rein-
forcement learning environments for goal-oriented tasks. In Advances in
Neural Information Processing Systems 36, New Orleans, LA, USA, De-
cember 2023.

15

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2407.17032

[19] Reinis Cimurs, Il Hong Suh, and Jin Han Lee. Goal-driven autonomous
exploration through deep reinforcement learning. IEEE Robotics and Au-
tomation Letters, 7(2):730–737, 2022. doi: 10.1109/LRA.2021.3133591.

[20] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and
William Woodall. Robot operating system 2: Design, architecture,
and uses in the wild. Science Robotics, 7(66):eabm6074, 2022. doi:
10.1126/scirobotics.abm6074. URL https://www.science.org/doi/abs/

10.1126/scirobotics.abm6074.

[21] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
volume 3, pages 2149–2154 vol.3, 2004. doi: 10.1109/IROS.2004.1389727.

[22] Ruihua Han et al. IR–SIM: An open-source lightweight simulator for
robot navigation, control, and learning, 2024. URL https://github.com/

hanruihua/ir-sim.

[23] Tianhan Gao, Jin Zhang, and Qingwei Mi. Procedural generation of game
levels and maps: A review. In 2022 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), pages 050–055,
2022. doi: 10.1109/ICAIIC54071.2022.9722624.

[24] Jarek Liesen, Chris Lu, and Robert Lange. rejax, 2024. URL https:

//github.com/keraJLi/rejax.

16

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/hanruihua/ir-sim
https://github.com/hanruihua/ir-sim
https://github.com/keraJLi/rejax
https://github.com/keraJLi/rejax

Appendix

RL Algorithms Hyperparameter Tuning

Hyperparameter Search Spaces

In this section, we provide the hyperparameter search spaces for each of the
three RL algorithms (PPO, SAC and TD3), as detailed in section 5.

PPO:

• Learning Rate: (1e-5, 1e-3), log

• Number of Minibatches: [16, 32, 64, 128, 256]

• Number of Steps: [64, 128, 256, 512]

• GAE Lambda: (0.9, 1.0)

• Entropy Coefficient: (0.0, 0.1)

• Clip Epsilon: (0.1, 0.3)

• Gamma: (0.9, 0.999)

SAC:

• Learning Rate: (1e-5, 1e-3), log

• Batch Size: [64, 128, 256, 512]

• Buffer Size: [50,000, 100,000, 200,000, 500,000]

• Polyak: (0.9, 0.999)

• Target Entropy Ratio: (0.5, 1.0)

• Target Update Frequency: [1, 2, 3, 4]

• Gamma: (0.9, 0.999)

TD3

• Learning Rate: (1e-5, 1e-3), log

• Exploration Noise: (0.1, 0.5)

• Buffer Size: [50,000, 100,000, 200,000, 500,000]

• Batch Size: [64, 128, 256, 512]

• Polyak: (0.9, 0.999)

• Target Noise: (0.1, 0.4)

• Policy Delay: [1, 2, 3, 4]

17

Optimal Hyperparameters

In this section, we provide the optimal hyperparameters obtained through hy-
perparameter tuning for each of the three RL algorithms , as detailed in sec-
tion 5.

PPO:

• Learning Rate: 0.0004

• Number of Minibatches: 256

• Number of Steps: 512

• GAE Lambda: 0.93

• Entropy Coefficient: 0.0095

• Clip Epsilon: 0.146

• Gamma: 0.96

SAC:

• Learning Rate: 0.0009

• Batch Size: 512

• Buffer Size: 500,000

• Polyak: 0.90

• Target Entropy Ratio: 0.82

• Target Update Frequency: 3

• Gamma: 0.96

TD3:

• Learning Rate: 0.0005

• Exploration Noise: 0.44

• Buffer Size: 50,000

• Batch Size: 256

• Polyak: 0.97

• Target Noise: 0.16

• Policy Delay: 1

18

Training Curves

Figure 4: The rewards collected throughout the training of the RL algorithms.

Generated Trajectories

Figure 7 and Figure 8 display the trajectories generated by each algorithm
after hyperparameter adjustment, evaluated over 9 test episodes. Note that the
trajectories are truncated after 100 environment steps, meaning the agent may
not always reach the goal within this limit.

19

Episode PPO SAC TD3

1

2

3

4

Figure 5: Comparison of trajectories generated by tuned PPO, SAC, and TD3
algorithms with MLP across evaluation episodes 1 to 4.

20

Episode PPO SAC TD3

5

6

7

8

9

Figure 6: Comparison of trajectories generated by tuned PPO, SAC, and TD3
algorithms with MLP across evaluation episodes 5 to 9.

21

Model Architectures Hyperparameter Tuning

Hyperparameter Search Spaces

In this section, we provide the hyperparameter search spaces for each of the
three models (MLP, LSTM and GTrXL), as detailed in section 5.

MLP:

• # Hidden layers: (1, 3)

• Hidden layer size: [64, 128, 256]

• Step Penalty: (0.01, 0.5)

• Progress Reward: (0.1, 1.0)

• Cycling Penalty: (0.001, 0.5)

LSTM:

• # Layers: (2, 10), int

• Layer Dimensionality: (5, 16)

• Step Penalty: (0.01, 0.5)

• Progress Reward: (0.1, 1.0)

• Cycling Penalty: (0.001, 0.5)

GTrXL:

• Embedding Dimensionality: [8, 16]

• Head Dimensionality: (1, 8)

• # Layers: (2, 5)

• Step Penalty: (0.01, 0.5)

• Progress Reward: (0.1, 1.0)

• Cycling Penalty: (0.001, 0.5)

22

Optimal Hyperparameters

In this section, we provide the optimal hyperparameters obtained through hy-
perparameter tuning for each of the three model architectures (MLP, LSTM,
GTrXL), as detailed in section 5 .

MLP:

• # Hidden layers: 1

• Hidden layer size: 256

• Step Penalty: 0.191

• Progress Reward: 0.611

• Cycling Penalty: 0.352

LSTM:

• # Layers: 2

• Layer Dimensionality: 15

• Step Penalty: 0.370

• Progress Reward: 0.443

• Cycling Penalty: 0.203

GTrXL:

• Embedding Dimensionality: 8

• Head Dimensionality: 4

• # Layers: 2

• Step Penalty: 0.232

• Progress Reward: 0.291

• Cycling Penalty: 0.276

23

Generated Trajectories

Figure 7 and Figure 8 display the trajectories generated by each model after
hyperparameter adjustment, evaluated over 9 test episodes. Note that the tra-
jectories are truncated after 200 environment steps, meaning the agent may not
always reach the goal within this limit.

Episode MLP LSTM GTrXL

1

2

3

4

Figure 7: Comparison of trajectories generated by tuned MLP, LSTM, and
GTrXL models (trained by PPO) across evaluation episodes 1 to 4.

24

Episode MLP LSTM GTrXL

5

6

7

8

9

Figure 8: Comparison of trajectories generated by tuned MLP, LSTM, and
GTrXL models (trained by PPO) across evaluation episodes 5 to 9.

25

	Introduction
	Related Work
	Methods
	Experiments & Setups
	Results
	Conclusion

