PA026
Artificial intelligence project

Object detection and tracking

Hynek Pavlacky 514592
May 2025



1 Introduction

Object detection is a computer vision task in which we are trying to find bounding boxes
surrounding objects of interest and also classify them. Tracking is a related problem in
which we are trying to follow individual object instances over time (in sequences of images).
In other words, the goal is to assign a unique label to each detected object and keep the
same label for the same real-world object in subsequent time frames.

Both detection and tracking are important problems and there are many proposed so-
lutions attempting to solve them, as well as many different datasets used for benchmarking
these solutions.

The goal of this project was to implement and quantitatively evaluate a pipeline for
tracking objects in image sequences of traffic.

2 Dataset

The dataset used in this project was the KITTI MOTS dataset[1]. It contains 21 sequences of
images of traffic with two annotated classes of objects — cars and pedestrians. Annotations
in this dataset contain segmentation masks for each object instance so it is suitable for the
task of instance segmentation as well, not just detection and tracking. However, the focus
of this project was just on the detection and tracking.

3 Tracking pipeline

The tracking was performed in two steps. In the first step, objects were detected in each
frame separately using a neural network. In the second step, the DeepSORT|[2] algorithm
was used to connect detections belonging to the same real-world object across subsequent
image frames.

3.1 Detection

Detections were predicted in individual frames using deep neural networks. Two models
were trained in this project, the Mask-RCNN][3] and a transformer-based detection model
(DETR)[4].

3.1.1 Mask-RCNN

The Mask-RCNN is a two-stage object detector. In the first stage it computes image features
by applying a deep convolutional neural network (backbone) to the input image[3].

Afterwards, another convolutional neural network called the Region Proposal Network
(RPN) takes these computed features together with a fixed number of predefined bounding
boxes called anchor boxes and predicts a relative shift, scaling factor and a confidence score
for each anchor box. High confidence boxes are kept as the proposed regions[3].

In the second stage, image features inside each proposed region are individually trans-
formed to the same size by a pooling method called ROI Align, which uses sampling and
interpolation to get a fixed-size output that accurately represents the features inside the
proposed boxes|[3].



5 -
region proposal network —

~ convolutional network

Figure 1: Mask-RCNN model, image taken from [5]

These fixed-size features one by one become input to fully-connected layers which predict
the class of the object and a transformation of the proposed box into a final bounding box.
A segmentation mask for the detected object can also be easily predicted by applying fully
convolutional layers on these features[3].

Figure 1 shows the detection process with Mask-RCNN.

3.1.2 Detection transformer — DETR

i
backbone | encoder

1
sel of image Ieatures::
1

ST

FFN ok
____________ transformer transformer object
decoder class
FFN e

[

_____________________________________________________________________

Figure 2: DETR model, image taken from [4]

The DETR model also uses a convolutional backbone to compute image features. Then
the features are transformed into a sequence of embedding vectors (values in different chan-
nels form the embedding vectors for individual pixels) and positional encoding is used to keep
information about the pixel’s coordinates. These vectors go through a standard transformer
encoder network[4].

The decoder then takes as input the output of the encoder and a fixed number of object
queries, which are learnable vectors that serve a similar purpose as anchor boxes in Mask-
RCNN. Its outputs are transformed embeddings for each query. Finally, these embeddings
are sent to a standard neural network with fully connected layers, which predicts an object
class and a bounding box.[4]

Figure 2 illustrates how DETR works.



3.2 Tracking

Tracking is done by connecting bounding box detections in subsequent frames using the
DeepSORT algorithm. DeepSORT maintains information about the current object tracks
and when bounding boxes from the next image frame are computed, it tries to extend
the tracks by finding an optimal assignment between the tracks and the new detections.
Assigning a track to a box has a particular cost and the optimal assignment is the one
minimizing the overall cost[2].

The cost function used in DeepSORT combines two metrics. The first is the intersection
over union (IoU) of the newly detected boxes with the predicted new position of the tracks
based on their previous position and velocity. The second metric is cosine similarity of two
vectors representing the image features inside the two compared boxes, these feature vectors
are computed using a pre-trained neural network|[2].

3.3 Training

Training was performed on 13 sequences of the annotated data, 4 additional sequences were
used for validation and 4 for testing. Annotations also contained an additional ”ignore” class
label, which specified image regions without corresponding mask annotations, these image
regions were simply masked out with a constant color during both training and evaluation,
in order to prevent the networks from producing ”false positives” on these unannotated
regions.

Mask-RCNN implementation with a ResNet backbone is available in Torchvision[6]. The
DETR implementation is from HuggingFace[7]. Pre-trained weights were used for both
detection models, the output layers were replaced to match the number of classes in our
dataset and then the model was fine-tuned.

Since there are around 4000 images in the training data and many of them are similar
because they belong to the same image sequence, overfitting was observed after only a few
epochs of training of the pre-trained models. To deal with this problem, heavy augmentation
of the training data was used. Images were randomly translated, rotated, scaled, horizontally
flipped and their brightness and contrast were randomly changed.

Adam optimizer was used for training and different learning rates were used for the
backbones and the rest of the networks. Mask-RCNN was trained for 10 epochs, the DETR
model for 20.



4 Examples

The following examples show the difference in outputs (after tracking) between the Mask-
RCNN and DETR detection models.

Figure 4: Transformer output — example 1



Figure 5: Mask-RCNN output — example 2

Figure 6: Transformer output — example 2



Figure 8: Transformer output — example 3



5 Evaluation

To evaluate quality of the detections (before tracking), variants of the Mean Average Pre-
cision metric (mAP) were computed.

First, it is important to describe Average Precision (AP). The AP metric is defined as
an area under a Precision-Recall curve. Points on this Precision-Recall curve are computed
in the following way: we iterate over predicted bounding boxes sorted from highest to lowest
confidence score and at each step we try to find a ground truth box that overlaps with the
predicted box the most, i.e., the pair has the highest IoU, this IoU also needs to pass a pre-
defined threshold to be considered a valid match. Then the number of total True positives
(matched boxes), False positives (predicted box with no ground truth) and False negatives
(undetected ground truth boxes) are updated and the standard Precision and Recall met-
rics are computed (this creates one point on the curve). After all the predicted boxes are
exhausted (all points computed), the area under the constructed Precision-Recall curve can
be computed[8].

These are the variants of mAP used in the evaluation:

1. AP (cars) — AP for the car class, averaged over IoU thresholds 0.5, 0.55, ..., 0.9
2. AP (pedestrians) — same as above but for pedestrian class

3. mAP@50 — AP with IoU threshold 0.5, averaged over the two classes

4. mAPQ75 — AP with IoU threshold 0.75, averaged over the two classes

5. mAP — AP averaged over thresholds 0.5, 0.55, ..., 0.9 and then averaged over both
classes

To evaluate the tracking, the predicted tracks were compared with ground truth tracks
and the following metrics were computed: Precision, Recall, MOTA and MOTP[9].

Notation[9]:
e TP, — number of matches (IoU > threshold) in frame t
e [P, — number of false positive boxes in frame t
e F'N; — number of unmatched ground truth boxes in frame t
e TP, FP, FN — values accumulated over all frames
e (GG; — number of ground truth objects in frame t

e S; — number of ID switches in frame t (a ground truth box corresponding to a
particular real-world object was matched to a box with a different track ID than in
the previous frame)

Precision and Recall are defined in the standard way:

TP

P .. _
recitsion TP+ FP



TP

Recall = m

MOTA is defined as[9]:

B > FP +FN, + 5,
Zt Gt

MOTP is defined as the average distance (1 - IoU) of all the matched pairs of bounding
boxes (True positives)[9].

MOTA=1

Results of the evaluation for both the models can be seen in Table 1.

Metric Model
Mask-RCNN DETR

mAP 0.52 0.44
mAP@50 0.89 0.83
mAPQT75 0.57 0.43
AP (cars) 0.63 0.58

AP (pedestrians) 0.42 0.29
Precision 0.73 0.74
Recall 0.78 0.81
MOTA 0.30 0.31
MOTP 0.40 0.40

Table 1: Evaluation

The DETR model struggles more with detecting pedestrians and sometimes even mis-
classifies them as cars, which contributes to the low mAP score. Overall, cars are easier to
detect for both models, as the pedestrians are smaller and often appear in more confusing
scenes or far in the background.

As for the tracking metrics, the MOTP metric is 0.4 for both models, which means
the average IoU of matched boxes is 0.6. This explains the significant dropoff between
mAP@50 and mAP@75. MOTA is a lot lower than both Precision and Recall because of
identity switches.



6 Implementation and startup instructions

The project was implemented in Python (3.10.9). The PyTorch[10] library was used to
create a custom pipeline to load the data and train the models. The Python scripts used
for training and evaluation (maskrcnn_evaluation.py, ...) are provided together with the
trained model weights. A complete list of all the libraries used is specified in the ”require-
ments.txt” file.

Before running the scripts used for training or evaluation with Python, it is necessary to:
1. Install Python 3.10.9
2. Create and activate a Python virtual environment

3. Install dependencies (pip install -r requirements.txt)

S

. Set the project directory as the working directory

10



References

1]
2]

[10]

Paul Voigtlaender et al. “MOTS: Multi-Object Tracking and Segmentation”. In: Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2019.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple Online and Realtime Track-
ing with a Deep Association Metric”. In: CoRR abs/1703.07402 (2017). arXiv: 1703.
07402. URL: http://arxiv.org/abs/1703.07402.

Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017). arXiv: 1703.
06870. URL: http://arxiv.org/abs/1703.06870.

Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In: CoRR
abs/2005.12872 (2020). arXiv: 2005 .12872. URL: https://arxiv.org/abs/2005.
12872.

Jonathan Hui. Image segmentation with Mask R-CNN. 2018. URL: https://jonathan-
hui.medium.com/image-segmentation-with-mask-r-cnn-ebe6d793272.

URL: https://docs.pytorch.org/vision/main/models/mask_rcnn.html.
URL: https://huggingface.co/docs/transformers/en/model_doc/detr.

URL: https://learnopencv.com/mean-average-precision-map-object-detection-
model-evaluation-metric/.

Keni Bernardin and Rainer Stiefelhagen. “Evaluating multiple object tracking per-
formance: the CLEAR MOT metrics”. In: J. Image Video Process. 2008 (Jan. 2008).
ISSN: 1687-5176. DOI: 10.1155/2008/246309. URL: https://doi.org/10.1155/
2008/246309.

URL: https://pytorch.org/.

11



