
PA026 Report - LIBS hyperspectral map

segmentation

Pavel Nedělńık, 485564
Petr Kadlec, 485208

June 20, 2023

1 Project Description

The goal of the project was to design and implement an interactive graph-
ical application for the analysis of hyperspectral images obtained by Laser-
Induced Breakdown Spectroscopy. The application provides the user with
tools to explore the images and assign labels to individual spectra with ma-
chine learning techniques. Due to the time limitations, the project mainly
focuses on the necessary graphical application rather than fully developing
the machine learning models.

The main focus point of the application is the Image Panel, it displays the
hyperspectral image as a heatmap with intensities summed over all measured
wavelengths and provides the user with a brush tool that allows them to
quickly assign labels to large areas of the image by drawing over them.

A line plot allows the user to inspect any spectrum by hovering over
the corresponding point in the heatmap. To change which wavelengths are
used to calculate the user can select a region on a line plot of the mean
spectrum. The user can control the machine learning models supporting
the visualization through the Model Panel. The manually assigned labels
can be downloaded and uploaded. The application also allows the user to
download the labels suggested by any of the machine learning models.

2 Related Works

There are several ways to tackle the problem of image segmentation in hy-
perspectral maps. These approaches could be split into these categories: [1,
2]

1. Threshold-based segmentation

Intensity-based method where pixels belonging to a range of intensities
are in a class and the rest belongs to some others.

1



Figure 1: Layout of the application.

2. Clustering-based segmentation

Standard clustering task that is well known where we try to segment
the hyperspectral image into multiple classes based on pixel distances.

3. Watershed segmentation

Watershed segmentation involves treating the image gradient as a to-
pographic surface. Bright pixels are viewed as elevated areas or wa-
tershed lines, while dark pixels represent lower regions or basins. To
initiate the segmentation process, a marker or seed point is intuitively
selected within each object and expanded using the morphological wa-
tershed technique. By flooding the basins, the areas where floodwater
from multiple basins intersects are identified, and borders are estab-
lished using a segmentation approach.

4. Morphological segmentation

Morphological segmentation involves segmenting images by manipu-
lating their shapes and structure using structural elements. Morpho-
logical operations include opening, closing, dilatation, and erosion.

5. Edge detection-based segmentation

Segmentation based on edge detection relies on identifying the discon-
tinuities in pixel intensity values and generating binary images. The

2



edges are detected by comparing the first-order derivative of the pix-
els to a specific threshold value or by identifying zero crossings in the
second-order derivative. These detected edges are then connected to
form the boundaries of objects.

6. Superpixel segmentation

Superpixel segmentation refers to the process of grouping pixels based
on their similar characteristics, such as intensity values. These super-
pixels contain more information than individual pixels and are percep-
tually relevant as they capture visual qualities shared by comparable
pixels. The most commonly used methods for generating superpixels
include simple linear iterative clustering and entropy rate segmenta-
tion.

7. Region segmentation

This approach involves dividing the regions with similar properties
into groups. It can be categorized into three main techniques: region
growth, region splitting, and region merging.

8. Deep Learning

Approaches using deep neural networks, convolutional neural networks,
long short-term memory, and transfer learning.

3 Methodology

Out of all of the presented categories in the previous chapter, we put our
focus on the underlying machine learning algorithms used.

3.1 The goal of the ML task

The goal of the machine-learning task was to segment the image into mul-
tiple zones, with the idea being that the sample from which we got the
hyperspectral map is composed of several base elements. Each of the ele-
ments outputs a different wavelength when hit with a high-powered laser,
thus from that, we can theoretically deduce the combination of elements
that produced a given spectrum.

3.2 Models

We implemented a selection of promising and interesting machine-learning
models from a hyperspectral image segmentation overview study [1]. The
selection process was based on the novelty of the approach and the ease of
implementation.

3



Based on a literature review [2, 3, 1], we decided to incorporate the fol-
lowing approaches: Principal Component Analysis (PCA) preprocessing fol-
lowed by machine-learning models, namely Support Vector Machine (SVM)
and Multi-Layer Perceptron (MLP), K-Nearest Neighbors classifier (KNN),
Convolutional Neural Network (CNN), Gradient Boosting classifier (GB),
Gaussian Naive Bayes (GNB), and Random Forest (RF). As the baseline
for the experiment, we chose an unsupervised K-Means clustering model.

3.3 Training process

The main problem for the training process was providing labels to the data
points. As a remedy for this problem, we have created a solution to it by
implementing the interactive map where it is possible to input class/segment
labels for the machine learning models to learn. From this, we were able to
have a manual training dataset. We have also created a synthetic dataset,
this dataset is explained later in the evaluation section. One data point
in the map represents roughly a vector of the size 3800 - the strength of
response at different wavelengths.

After a user inputs these labels either through the included interactive
map or upload option the machine-learning model is started on this map
with the annotated data points being the training set and the rest of the
data points are then to be predicted.

4 Implementation Details

The project is fully realized in Python, utilizing the Plotly Dash framework
for defining a browser-based interactive user interface. The application in-
corporates a wide range of machine learning models implemented with the
use of the scikit-learn package, as well as Keras. Data manipulation was
done using NumPy.

The model hyperparameters are too extensive to be listed as a part of
this report but can be found in the main.ipynb notebook alongside model
definitions.

5 Evaluation

In the current phase of the project, we focused on validating the benefits of
the user input and the effectiveness of the user interface. To this end, we
designed two experiments.

In the first experiment, we directly simulated a possible use case of the
application. A smaller dataset was first fully labeled by one member of
the team before allowing the other to do the same with the use of the
application, with as little human effort as possible. After a short window

4



for user interaction, results from all the considered models were collected
and analyzed, see below. More information about the dataset used can be
found in the aforementioned article, see Section 6.

The second experiment was done analogously to the first, the major
change being that a synthetic dataset was used, rather than a real one.
The synthetic data mimicked a steel sample - the considered elements were
Iron, Carbon, Chromium, Nickel, and Manganese, with Iron and Carbon
being varied randomly, and a gradient of Nickel and Manganese was used to
define the target classes. The theoretical spectra were obtained with the use
of a spectral database and were smoothed and Gaussian noise was added to
them. The results of the experiments can be seen in the table below.

K-Means KNN GNB RF GB

real 0.83 0.85 0.89 0.89 0.89
synthetic 0.63 0.94 0.78 0.95 0.95

PCA+SVM PCA+MLP Large MLP CNN MLP

real 0.90 0.90 0.89 0.91 0.89
synthetic 0.95 0.96 0.97 0.97 0.95

Table 1: Accuracy of selected models for the experiments on real and syn-
thetic data.

In both experiments, only approximately 1% of the dataset (single stroke
per visible inclusion) had to be manually labeled for most models to achieve
very high accuracy, speaking volumes in terms of the effectiveness of the
approach, as the necessary steps can be done in terms of low minutes. Ad-
ditionally, in all the experiments the supervised methods outperformed the
baseline unsupervised K-Means model, affirming the benefits of the appli-
cation.

6 Installation

The project code, along with a toy dataset, is available via a Github repos-
itory (https://github.com/PavelNedelnik/libs-segmentation). The code to
generate the synthetic data used for evaluation, see Section 5, is also avail-
able. The dataset used to simulate a real application is available through
Figshare (https://dx.doi.org/10.6084/m9.figshare.20713504).

After cloning the repository and installing all the necessary requirements,
the application can be launched by running the main.ipynb notebook and
can be accessed by most web browsers on localhost on port 8050. To replicate
the experiments mentioned in Section 5, change the mode in the second cell
of the main.ipynb notebook. The SimulatedLIBS package might need to be
installed manually.

5

https://github.com/PavelNedelnik/libs-segmentation
https://github.com/PavelNedelnik/libs-segmentation
https://dx.doi.org/10.6084/m9.figshare.20713504
http://127.0.0.1:8050/


References

[1] Reaya Grewal, Singara Singh Kasana, and Geeta Kasana. “Hyperspec-
tral image segmentation: a comprehensive survey”. In:Multimedia Tools
and Applications 82 (Oct. 2022), pp. 1–54. doi: 10.1007/s11042-022-
13959-w.

[2] Shraddha Tripathi et al. “Image segmentation: a review”. In: Inter-
national Journal of Computer Science and Management Research 1.4
(2012), pp. 838–843.

[3] Antonio Plaza et al. “Recent advances in techniques for hyperspec-
tral image processing”. In: Remote Sensing of Environment 113 (2009).
Imaging Spectroscopy Special Issue, S110–S122. issn: 0034-4257. doi:
https://doi.org/10.1016/j.rse.2007.07.028. url: https://www.
sciencedirect.com/science/article/pii/S0034425709000807.

6

https://doi.org/10.1007/s11042-022-13959-w
https://doi.org/10.1007/s11042-022-13959-w
https://doi.org/https://doi.org/10.1016/j.rse.2007.07.028
https://www.sciencedirect.com/science/article/pii/S0034425709000807
https://www.sciencedirect.com/science/article/pii/S0034425709000807

	Project Description
	Related Works
	Methodology
	The goal of the ML task
	Models
	Training process

	Implementation Details
	Evaluation
	Installation

