
Wine quality classification

PA026 report

Miroslav Mažgut, Filip Gregora

June 2025

The primary objective of this project was to predict wine quality based on various chemical compounds,
including citric acid, residual sugar, and others. A secondary aim was to examine the effect of different
upsampling techniques to the performance of machine learning algorithms.

1 Exixting projects

An earlier study working with the same dataset is presented in [1]. While that work focused on applying
standard machine learning models to the wine quality dataset, it did not address the issue of class
imbalance.

In our project, we build upon this foundation by introducing and evaluating various sampling tech-
niques specifically designed to handle imbalanced data. Our main contribution lies in applying methods
such as SMOTE, KMeans-SMOTE, and synthetic data generation to improve the representation of mi-
nority classes, thereby aiming to boost the overall performance and robustness of the models.

2 Dataset, Preprocessing and Evaluation

This chapter introduces the dataset used in the project, describes the preprocessing steps, and describes
used evaluation metrics.

2.1 Dataset

In this project, two datasets were used. The first dataset contains 4 898 samples of white wine, while the
second contains 1 599 samples of red wine. These datasets were combined into a single dataset, with a label
which indicate whether each sample is red or white wine. As a result, we obtained a dataset with a total of
6,497 wine samples. Both of these datasets can be accessed from: https://archive.ics.uci.edu/dataset/186/wine+quality.

Each sample includes the following features: fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, quality, and a binary
indicator specifying whether the wine is red.

The dataset contains seven distinct wine quality classes. As shown in Figure 1, the majority of
instances are concentrated in the middle quality classes, while the border classes contain significantly
fewer samples. We expect that the limited number of samples in the border classes negatively affects
model performance. Therefore, applying upsampling techniques may help improve the performance of
machine learning models. However, we expect that the two smallest classes may not have enough samples
to effectively apply upsampling methods.

1

https://archive.ics.uci.edu/dataset/186/wine+quality


Figure 1: Plot of number of instances in each class

2.2 Preprocessing, Learning Pipeline

The first step we have done with our dataset was to separate the dataset into input features and target
values. From original dataset we have removed attribute quality and store it in its own table. Subsequently,
the data was split into training, validation, and test sets. The test set contains 20 % of samples, train set
contains 64 % of samples and validation set contains 16 %.

The next step was to normalize the data using standardization, which transforms the data to follow
a Gaussian distribution with a mean equal to 0 and a standard deviation equal to 1.

x′ =
x− µ

σ

Where x′ is transformed value, x is input value, µ the average value from the data, and σ is the
standard deviation from the data.

After this step we applied model dependent preprocessing or directly some machine learning model.
Each model or preprocessing contains different hyperparameters, which we need to optimize. For this
purpose we have used Halving Grid Search, which start searching all possible combinations, but after
some steps prune not promissing solutions.

After this step, we applied model specific preprocessing or directly a machine learning model. Each
model or preprocessing method includes various hyperparameters, which require tuning. For this purpose,
we used Halving Grid Search, an efficient optimization technique that begins with evaluating all possible
hyperparameter combinations on a limited subset of resources. As the search progresses, less promising
configurations are pruned, allowing more resources to be allocated for the most promising candidates.

2



2.3 Evaluation

For evaluation, we use multiple metrics and observe the performance of models across each of them. The
first metric is the Root Mean Squared Error (RMSE), which measures the average magnitude of the
prediction error and is commonly used in regression tasks. RMSE measures how far are the predicted
values from the actual values.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Where n is number of samples, yi is prediction of model for the i-th sample and ŷi is correct value for
the i-th sample.

The second metric used is accuracy, which represents the proportion of correctly predicted instances
from the total number of predictions. Accuracy is commonly used in classification tasks, we include it in
our evaluation because, despite performing a regression task, the number of quality classes is relatively
small. For this reason we aim to assess how well the models can distinguish between these discrete quality
levels.

The last used metric is balanced accuracy, which calculates the average in each class and average
them together. This metric is useful, when we have imbalanced class distributions, because it gives equal
weight to each class regardless of its frequency. The reason for using this metric is same as for accuracy,
however, due to the imbalanced distribution of classes, balanced accuracy provides a more meaningful
evaluation.

3 Models

After preprocessing, we trained several machine learning models and compared their performance. The
selected models are Naive Bayes (NB), Regression Tree (Tree), Ridge Regression (LR), Support Vector
Machine (SVM), and Neural Networks (NN). In our implementation code, we are referring to these models
using abbreviations, which are provided in parentheses behind each model.

3.1 Naive Bayes (NB)

The Naive Bayes model is quite simple and usually does well with text classification tasks, especially
when features are conditionally independent given the class. It applies Bayes’ Theorem with the “naive”
assumption that all features contribute independently to the outcome. Despite its simplicity, Naive Bayes
can perform surprisingly well, particularly with large datasets and when speed is important.

3.2 Regression Tree

This model works by splitting the data into subsets based on feature values, creating a tree-like structure
where each leaf represents a predicted value. It captures non-linear relationships and interactions between
variables effectively. Regression Trees are easy to interpret and visualize, but they can be prone to
overfitting if not properly pruned or regularized. In our project, we limited the maximum depth of the
regression tree to 20 to prevent overfitting and maintain model interpretability.

3.3 Ridge Regression

The Ridge Regression is a linear model that includes L2 regularization, which adds a penalty to large
coefficient values to prevent overfitting. It is particularly useful when dealing with multicollinearity,
where predictor variables are highly correlated. Ridge Regression balances model complexity and fit,
often leading to better generalization on unseen data compared to ordinary linear regression. In the
project we set ridge alpha to 42.

3



3.4 SVM

The Support Vector Machine aims to find the optimal hyperplane that separates classes (or fits data, in
regression) with the maximum margin. It is effective in high-dimensional spaces and can model non-linear
relationships using kernel functions. SVMs are robust to overfitting, especially in cases with clear margins
of separation, but can be computationally intensive with large datasets. In the implementation, we used
the Radial Basis Function (RBF) kernel to capture non-linear relationships in the data.

3.5 Neural Network

This model is inspired by the structure of the human brain and consists of layers of interconnected nodes
(neurons) that can learn complex patterns in data. Neural Networks are highly flexible and capable of
modeling both linear and non-linear relationships. They perform well on large datasets, especially in tasks
like image and speech recognition, but require careful tuning and are often computationally expensive to
train.

For this neural network we chose feedforward architecture with 32 neurons in first hidden layer,
128 neurons in second, 64 neurons in third, 16 in fourth and 8 in last hidden layer. Feedforward architec-
ture is neural network, where each neuron in each layer is connected to all neurons in previous layer. We
trained the model for 500 epochs using the Adam optimizer with a learning rate of 0.0001, a batch size
of 64, and one worker for data loading. We applied a dropout rate of 0.5 to prevent overfitting, and the
input layer was shaped according to the number of features in the training data.

4 Upsampling

To address class imbalance, we experimented with several sampling methods and compared their ap-
proaches. The selected methods are Random Sampling, SMOTE, KMeans-SMOTE, and ChatGPT
Prompting. In the following paragraphs, each method is described in detail, outlining how it works
and its role in balancing the dataset.

4.1 Random Upsampling

Random Sampling selects data points randomly from the dataset without considering the class distri-
bution. This simple method can be quick but may lead to imbalanced samples that do not represent
minority classes well.

4.2 SMOTE Upsampling

SMOTE (Synthetic Minority Over-sampling Technique) balances class distribution by generating syn-
thetic examples for the minority class. It creates new samples by interpolating between existing minority
instances in feature space, helping to improve model performance on underrepresented classes.

4.3 KMeans SMOTE Upsampling

This upsampling method builds on SMOTE by first clustering the data using KMeans. It then applies
SMOTE within each cluster, which helps preserve the underlying data structure and reduces the intro-
duction of noise during oversampling.

4.4 GPT Upsampling

ChatGPT Prompting leverages a language model like ChatGPT to generate synthetic samples based on
user-defined prompts. This method enables controlled data generation aligned with specific attributes or
class characteristics, offering a flexible approach to augmenting datasets.

4



The following prompt was used together with the provided raw data: For the uploaded dataset, do
upsampling so that the number of samples is balanced for the quality attribute. The dataset contains
physicochemical analysis of northern Portuguese wines. For upsampling interpret each sample as row and
predict the data only based on your opinion. For upsampling use deep AI generative approach. Provide
me upsampled dataset.

The promt to ChatGPT can be found there: https://chatgpt.com/share/68053f08-2e4c-8011-a21c-
1b7f9f6cacd5.

5 Used technologies, installation and startup instructions

Generally speaking, we used the Python programming language along with the environment and technolo-
gies it provides. For development, we used a combination of Jupyter notebooks (more precisely, Markdown
notebooks compiled in JupyterLab into Jupyter notebooks for better versioning) together with the version
control system Git, hosted on the faculty’s GitLab repository.

For technologies, we used Python’s libraries. For data manipulation and processing, we used Pandas
and NumPy; for model construction, scikit-learn and PyTorch; and for data plotting, Matplotlib and
Seaborn, together with some extra utility libraries.

5.1 Installation and Startup Instructions

To run the notebook, Python 3, JupyterLab, and the libraries listed in the requirements.txt file (in-
stallable via the pip package manager) are required.

The project includes CSV files containing both raw and upsampled data. It also consists of four
Markdown files:

• wine quality classification: main classification notebook

• wine quality no borders upsampling: upsampling without class
border constraints

• wine quality upsampling: standard upsampling implementation

• graphs preparation: generates plots from recorded evaluation data in upsampling whole sep.csv

saved in figs directory

6 Results

In the results of our experiments, we observed several interesting patterns. These results can be seen
in figure 2. First, we found that the neural network model achieved the highest accuracy and balanced
accuracy across all upsampling methods. In terms of RMSE, the best results were obtained by both the
SVM model and the neural network model. We also noticed an inverse relationship between accuracy and
RMSE. Models with higher accuracy often have worser RMSE values.

Across all models, upsampling increased balanced accuracy, which indicated improved performance
on classes with few samples. But only the neural network model, with SMOTE upsampling and with
KMeans SMOTE upsampling, showed improvements in both accuracy and balanced accuracy. On the
other hand, upsampling generally led to higher (=worser) RMSE values, suggesting bigger mistakes in
predictions. The GPT based upsampling did not show good results across any of the metrics.

We also experimented with a modified dataset, where we removed the border quality classes with the
fewest samples, specifically quality 3 and quality 9. The results of this experiment are in figure 3. For
consistency, we used the original test set, quality 3 and 9 included, for evaluation.

5

https://chatgpt.com/share/68053f08-2e4c-8011-a21c-1b7f9f6cacd5
https://chatgpt.com/share/68053f08-2e4c-8011-a21c-1b7f9f6cacd5


Figure 2: Plots showing evaluation metrics of sampled data on different model architectures

6



In the modified dataset, we observed improved performance across all models in all evaluation metrics,
except for the neural network model. The neural network was an exception, where none of the upsam-
pling methods improved its performance except GPT-based upsampling, which significantly enhanced the
results.

On the other hand GPT-based upsampling did not perform well with all other models. In contrast,
random upsampling, SMOTE, and KMeans-SMOTE showed similar results across all models. For more
sophisticated models such as SVM and Neural Networks, KMeans-SMOTE achieved the best results,
followed by SMOTE, with random upsampling performing slightly worse. The differences between these
methods were small. For simpler models like Naive Bayes and Regression Tree, this order was reversed,
though the variation in performance across upsampling methods remained minor.

7 Conclusion

In this project, we focused on predicting wine quality using various machine learning models and evalu-
ating how different upsampling techniques influence their performance. We used several regression and
classification metrics to measure model accuracy, robustness, and error rate.

We tested five different models: Naive Bayes, Regression Tree, Ridge Regression, SVM, and Neural
Network and applied multiple upsampling techniques: Random Upsampling, SMOTE, KMeans-SMOTE,
and GPT-based synthetic data generation. Our experiments showed that upsampling methods generally
improved balanced accuracy across all models, especially in cases where class imbalance was significant,
but achieved worser results on RMSE.

GPT-based upsampling underperformed with most models, but with neural network, when we re-
moved small classes it significantly improved results. We also observed that models like SVM and Neural
Networks benefit from advanced upsampling methods such as KMeans-SMOTE, but difference between
upsampling methods is small and is worth considering if to use some advanced upsampling or to use
random upsampling with significantly less work.

Overall, the project demonstrates that addressing class imbalance through upsampling can lead to bet-
ter performance, especially when using more complex models, and highlights the importance of choosing
the right sampling strategy for a given model and dataset.

8 AI usage

ChatGPT was used to support the writing process by assisting with grammar correction and sentence
restructuring. Its main role was to improve the clarity and readability of the text. The content and ideas
presented in this work are entirely our own; the AI was only used as a tool to refine language and ensure
proper academic expression.

The only exception was the use of ChatGPT for generating sample data, as demonstrated in the
relevant section of the report.

References

[1] Hafsa Elmrini, Aicha Bouhorma, and Khadija Rhoulami. “Wine Quality Prediction Using Machine
Learning Algorithms”. In: Journal of Computer and Communications 9.10 (2021), pp. 73–85. doi: 10.
4236/jcc.2021.910006. url: https://www.scirp.org/journal/paperinformation?paperid=
107796.

7

https://doi.org/10.4236/jcc.2021.910006
https://doi.org/10.4236/jcc.2021.910006
https://www.scirp.org/journal/paperinformation?paperid=107796
https://www.scirp.org/journal/paperinformation?paperid=107796


Figure 3: Plots also include trimmed version of sampled datasets on different model architectures

8


	Exixting projects
	Dataset, Preprocessing and Evaluation
	Dataset
	Preprocessing, Learning Pipeline
	Evaluation

	Models
	Naive Bayes (NB)
	Regression Tree
	Ridge Regression
	SVM
	Neural Network

	Upsampling
	Random Upsampling
	SMOTE Upsampling
	KMeans SMOTE Upsampling
	GPT Upsampling

	Used technologies, installation and startup instructions
	Installation and Startup Instructions

	Results
	Conclusion
	AI usage

