
Playing Sudoku with Reinforcement Learning

PA026: Artificial Intelligence Project

Karmazin Vasilii, učo 540500

Faculty of Informatics, Masaryk University Brno

June 6, 2024

1 Introduction

Reinforcement Learning (RL) shines at playing complex games by learning optimal strategies
through trial and error. This project applies Reinforcement Learning to Sudoku, a challenging
deductive puzzle that requires filling a 9x9 grid with numbers 1 to 9 so that each row, column, and
3x3 subgrid contains all digits exactly once.

Sudoku puzzles range from easy to hard; some can be solved by applying basic Sudoku rules,
while others require complex strategies. Additionally, difficult puzzles are impossible to solve right
away and require predicting several moves ahead.

The project’s objective is to explore how well an RL-trained deep neural network can learn to
solve Sudoku puzzles, demonstrating the potential of RL in handling deductive reasoning tasks.

The project code and running instructions are available at GitLab:
https://gitlab.fi.muni.cz/xkarmaz/sudoku-rl

2 Related Work

Numerous methods to solve Sudoku puzzles vary based on the puzzle’s complexity. Simple brute-
force approaches involve trying all possible combinations, which can be highly inefficient given the
vast number of potential combinations. Specifically, the total number of possible Sudoku grids
is approximately 6.67 × 1021, making brute-force solutions impractical from algorithmic view and
requiring more sophisticated approaches.

Professional human solvers typically use the following algorithm:

1. Scan the grid for known patterns.

2. Apply heuristic to find a pattern by filling digit or removing possible candidates.

3. Starting with the simplest ones repeat the process until no patterns are found.

4. If no patterns were found, the player tries to predict moves or look for implicit hints, such as
grid symmetry or puzzle-specific patterns.

1

Modern systems for solving Sudoku puzzles, like SudokuSolver [1], operate on a similar al-
gorithmic approach. SudokuSolver [1] incorporates 39 different patterns and heuristics for solving
puzzles. This method is significantly faster than complete brute-force searches and can also evaluate
the difficulty of a puzzle based on the heuristics used.

Sudoku puzzles can be framed as a Constraint Satisfaction Problem (CSP), utilizing algorithms
from that domain, or as an optimization problem, leveraging machine learning techniques. Pub-
licly available solvers such as Solving Sudoku with Neural Networks [2] use Convolutional Neu-
ral Networks (CNNs) and achieve good results. Projects like SudokuAI experiment with CNNs
and Multilayer Perceptrons (MLPs), and other projects try Long Short-Term Memory Networks
(LSTMs) or custom heuristics. However, there are few publicly available projects to solve Sudoku
using reinforcement learning. The closest work to our approach is the recent project SudokuRL [3],
whose status is currently unknown. The lack of available information on that topic encourages us
to conduct RL experiments ourselves.

3 Reinforcement Learning

Reinforcement Learning involves an agent interacting with an environment to maximize cumulative
rewards. The agent, observing the state (s) of the environment, takes actions (a) that influence
the state and receive feedback in the form of rewards (r). The goal is to learn a policy, π(a|s),
that optimally balances exploration and exploitation to maximize the expected sum of rewards over
time. Figure 1

3.1 Tabular Q-Learning

Tabular Q-Learning is a model-free RL algorithm that learns the value of state-action pairs. The
value, known as the Q-value, represents the expected future rewards for taking a specific action in
a given state, and following the optimal policy thereafter. The Q-value is updated iteratively using
the following formula:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
where:

• Q(st, at) is the current Q-value for state st and action at.

• α is the learning rate (typically between 0 and 1).

• rt is the reward received after taking action at in state st.

• γ is the discount factor, representing the importance of future rewards (typically between 0
and 1).

• maxa Q(st+1, a) is the maximum Q-value for the next state st+1.

The agent uses an ϵ-greedy policy for action selection, where ϵ is the probability of choosing a
random action instead of the action with the highest Q-value, promoting exploration of the state
space.

2

Figure 1: Deep Reinforcement Learning training process

3.2 Deep Q-Learning

Deep Q-Learning (DQN) extends tabular Q-learning by using a neural network to approximate the
Q-value function, allowing it to handle large or continuous state spaces. The Q-network takes the
state as input and outputs Q-values for all possible actions.

The Q-network is trained using a loss function that minimizes the difference between the pre-
dicted Q-values and the target Q-values. The target Q-value for a given state-action pair is given
by:

y = rt + γmax
a′

Q(st+1, a
′; θ−)

where:

• y is the target Q-value.

• rt is the reward received after taking action at in state st.

• γ is the discount factor.

• maxa′ Q(st+1, a
′; θ−) is the maximum Q-value for the next state st+1 predicted by a target

network with parameters θ−.

The loss function for the Q-network is:

L(θ) = E
[
(y −Q(st, at; θ))

2
]

where θ are the parameters of the Q-network.
To stabilize training, DQN employs two key techniques:

3

• Experience Replay: The agent stores its experiences (st, at, rt, st+1) in a replay buffer and
samples random mini-batches of experiences to break the correlation between consecutive
updates.

• Target Network: A separate target network with parameters θ− is used to generate target
Q-values. The parameters of the target network are periodically updated with the parameters
of the Q-network.

These methods help in reducing the variance of updates and in stabilizing the learning process.

4 Implementation details

4.1 Environment

A training environment for the RL agent was implemented using the gymnasium [4] and pygame
[5] libraries. This environment enforces the rules of the Sudoku puzzle, validating the grid and
providing rewards for each action taken. The observation space is a 9x9 grid of integers from 0 to
9, where 0 represents an empty cell. The action space is a 9x9x9 vector, which can be reshaped
into a (row, column, digit) tuple.

The reward scheme implemented in the environment is as follows:

• +1 for each step.

• −5 for each incorrect step, e.g., if the cell is already occupied.

• −10 for each invalid step, e.g., if it creates an invalid Sudoku configuration.

• +10 for each solved row, column, or subgrid.

• +100 for solving the entire puzzle.

Any move leading to an incorrect puzzle configuration ends the episode. An alternative approach
was tried where the game does not end but the move is reverted, allowing the agent to try again.
However, this approach caused the agent to get stuck at a single point if the exploration rate was
low, preventing progress until the move limit was reached.

An example environment is shown in the Figure 2.

4.2 Agent

The agent utilizes a Convolutional Neural Network with the following configuration. The input
is a 9x9 matrix representing the Sudoku grid. This input is passed through two convolutional
layers with 32 and 64 filters, respectively. The resulting matrix is then reshaped into a vector and
processed by a fully connected layer, producing a 256-dimensional vector. This vector represents
the extracted features from the game board. Next, two additional fully connected layers are used
for action classification. The final output is a 729-dimensional vector, encoding the probability
distribution of digits across the entire puzzle.

At each step, the agent processes the Sudoku grid and chooses an action. If the chosen action
correspond to already occupied cell, then the next most probable action is selected. This action
masking accelerates the training process, as the agent does not need to learn the additional rule of
avoiding occupied cells. This approach was better for the convergence and training stability.

4

Figure 2: Training Environment: Green indicates correctly placed numbers, while red highlights
incorrect ones based on the unique solution. The agent’s first mistake was on move 5, and the
terminal error was on move 12, violating the uniqueness rule for 4-th subgrid.

4.3 Dataset

Two datasets were used:

1) Kaggle 3m Dataset [6]

• General dataset contains: 2.9M training puzzles, 3k validation puzzles, and 3k test puzzles.

• The minimum number of clues in the dataset is 19, and the maximum is 31.

• Difficulty is calculated based on the average search depth from 10 solver attempts.

• 43% of puzzles have a zero rating, solvable by scanning.

2) Handcrafted Puzzles from sudokuwiki.org [1]

• Test dataset with handmade 59 puzzles.

• Each puzzle requires specific strategies to solve.

• Some puzzles are unsolvable even with extreme strategies.

• This dataset is valuable because the puzzles are manually curated, targeting specific patterns
or interesting situations.

5

4.4 Training

The agent training process involves the following Deep Q-Learning algorithm:
1. Environment Setup: The Sudoku puzzle is loaded, and the state is represented as a 9x9

matrix.
2. Experience Collection: During each episode, the agent interacts with the environment

by selecting actions based on the current state of the Sudoku grid. These actions, along with the
resulting states and rewards, are stored in a replay buffer.

3. Action Selection: Actions are selected using an ϵ-greedy policy, balancing exploration
and exploitation. The agent avoids selecting actions that correspond to already occupied cells by
masking these actions.

4. Model Optimization: Periodically, a batch of experiences is sampled from the replay buffer
to train the Q-network. The Q-network is updated to minimize the difference between predicted
Q-values and target Q-values.

5. Target Network: A target network is used to stabilize training. This network is periodically
updated with the weights from the Q-network, providing consistent targets for Q-value updates.

6. Performance Evaluation: The agent’s performance is evaluated periodically using a sep-
arate validation set to ensure that the model generalizes well to unseen puzzles.

Initially, puzzles are loaded randomly, which may result in very challenging puzzles for the agent.
To address this, Curriculum Learning was experimented with, starting with simple puzzles with
only one digit missing and gradually increasing the difficulty.

The training sample example is shown in Table 1.

Type Encoded board
Puzzle ...81.....2........1.9..7...7..25.934.2............5

...975.....563.....4......68.

Solution 9348172567286534196159427381764258934523981673891765

42897564321563281974241739685

Table 1: Training sample example. Note: In training ’.’ is preprocessed to 0.

5 Experiments and Results

The initial experiments demonstrated that the training code is correct, allowing the agent to mem-
orize and solve a single puzzle. However, when scaling to the entire dataset, all metrics dropped to
zero. The agent converged to a suboptimal solution, with metrics plateauing and the loss constantly
increasing.

Next, we describe how we arrived at the final experimental setup.
Rewards: Modifying the reward function significantly impacts the entire training process,

sometimes making it impossible to compare results. We did not observe substantial changes in test
metrics, so we fixed the reward function for all experiments.

Model Architecture: We increased the network size until no further improvements in metrics
were observed. With a small number of parameters, the agent finds a dummy strategy and fails to
learn effectively.

6

Curriculum Learning: We start training on - simplified puzzles, which initially fill the replay
buffer with simplified puzzles and gradually increase difficulty.

Hyperparameters: Unlike standard hyperparameters, we increased the batch size to 256, the
learning rate to 0.001, and the exploration rate to 0.05. The batch size is particularly beneficial as
larger batch sizes smooth out the graphs and make optimization steps more accurate.

We trained the agent with this setup, achieving an accuracy of no more than 2%, which is better
than a random guess but insufficient to fully solve the puzzle. Despite our efforts, the training
graphs showed a similar trend — the agent learns a basic strategy and does not develop further
(see Figure 3a). Even with prolonged training, the loss graphs continue to increase (see Figure 3b).
We hypothesize that the agent does not generalize the rules but memorizes the simplest situations
until the model capacity is exhausted.

(a) Convergence trend for different agents. (b) Training for 1M steps on the final setup.

Figure 3: Agent convergence problem.

We also attempted to train the agent specifically on the test puzzles, hoping that the agent could
learn a pattern or heuristic. The agent achieved an accuracy of 16.79%, but did not completely
solve any puzzles. The results are provided in Table 2. It is evident from the results that the agent
performs better on simple puzzles where sufficient hints are already given. Among advanced tactics,
the agent seems to tried to learn 3D Medusa rule.

Our results somewhat correlate with ”Reinforcement Learning For Constraint Satisfaction Game
Agents” [7] paper.

7

Table 2: Evaluation results on test puzzles.
Correctness Rate - the ratio of correct moves made, where 1 indicates that all moves were correct
and the puzzle was solved.
Difficulty - human based puzzle difficulty from SudokuSolver wiki [1].
Complexity Score - computer based puzzle difficulty score from SudokuSolver wiki [1]; higher
numbers indicate the need for more complex heuristics.
Clues - number of pre-filled numbers in the puzzle.

Puzzle Correctness Rate Difficulty Complexity Score Clues
Hidden UR Type 1 0.6500 Easy 9 61
Simple Col. Rule 4 0.5833 Easy 8 61
3D Medusa Rule 6 0.5556 Hard 258 39
Y-Wing example 0.3500 Hard 163 44
3D Medusa Rule 4 0.3529 Hard 159 39
Hidden UR Type 2 0.3243 Hard 182 33
Aligned Pair Excl. 0.3243 Hard 277 36
3D Medusa Rule 3 0.3171 Hard 277 34
3D Medusa Rule 2 0.3000 Hard 249 39
3D Medusa Rule 1 0.2857 Hard 174 41

Swordfish 0.2667 Easy 37 51
Gentle 0.2545 Easy 18 26

Simple Col. Rule 2 0.2400 Easy 40 50
Unique Rect Type 2b 0.2391 Moderate 80 38
Simple Col. Rule 3 0.1600 Easy 37 49

X-Wing 0.1818 Tough 109 48
Riddle of Sho 0.1864 Extreme 229 40

Quad Forcing Chain 0.2000 Extreme 527 31
AIC - strong link 0.2000 Extreme 466 22

Unique Rect Type 2 0.1935 Moderate 71 28
Shining Mirror 0.1579 Easy 25 53

Almost Locked Set 0.1333 Easy 27 57
Sue-De-Coq 0.0444 Extreme 1256 22

Finned Swordfish 0.0435 Brute Force - 21
Finned X-Wing 0.0476 Brute Force - 21

Hidden UR Type 2b 0.0698 Hard 332 27
Unique Rect Type 4b 0.1250 Tough 808 17

SK Loop 0.1356 Tough 502 23
Unique Rect Type 4 0.1667 Tough 187 25

Escargot 0.1053 Extreme 522 35
XYZ-Wing 0.1064 Hard 207 41

Intersection Removal 0.1034 Easy 11 56
Naked Triples 0.0909 Easy 16 56
Diabolical 0.0926 Hard 277 34
Moderate 0.0566 Moderate 77 47

Hard 17 Clue 0.0781 Easy 75 17
Easy 17 Clue 0.0156 Easy 18 53
Easiest Sudoku 0.1633 Easy 11 58
Empty Rectangle 0.2292 Extreme 184 36
Grouped X-Cycle 0.2143 Extreme 428 36
X-Cycle (strong) 0.2258 Hard 301 28
X-Cycle (weak) 0.3929 Hard 258 39

XY-Chain 0.2174 Hard 387 35
AIC - weak link 0.1509 Moderate 80 35
AIC - off chain 0.1463 Hard 163 44

Dual Cell Forcing Ch. 0.1778 Easy 33 54
Triple Cell Forcing Ch. 0.0714 Tough 122 41
Triple CFC + ALS 0.1316 Hard 258 39

Triple Unit Forcing Ch. 0.1739 Easy 22 50
Death Blossom 0.1667 Easy 38 46

Exocet 0.0847 Brute Force - 24
Easter Monster 0.1333 Extreme 374 39
Arto Inkala 0.0833 Brute Force - 22

8

6 Conclusion

This project explored using RL to solve Sudoku puzzles. Sudoku’s strict rules and need for precise
deduction make it difficult for neural networks, which usually perform better in unpredictable or
continuous environments. Traditional search algorithms can solve Sudoku efficiently, reducing the
advantages of RL.

Our experiments showed that while a neural network agent can learn some rules, the lack
of opponents and the game’s deterministic nature limit RL’s effectiveness. We tried Curriculum
Learning, but this did not fully solve the problems. Additionally, RL has many hyperparameters,
making it hard to configure and debug.

In conclusion, while Sudoku seems like an easy game, it is challenging for neural networks,
especially in RL settings, which introduce additional complexities. It has been shown that neural
networks that solve the entire puzzle in one step or use heuristic methods perform better than the
iterative RL approach.

References

[1] “Sudoku solver by sudokuwiki.org,” 2021. [Online]. Available: https://www.sudokuwiki.org/
sudoku.htm.

[2] “Can convolutional neural networks crack sudoku puzzles?,” 2017. [Online]. Available: https:
//github.com/Kyubyong/sudoku.

[3] “Sudoku game using reinforcement learning,” 2024. [Online]. Available: https://github.com/
CristianCerasuolo-UniSa/SudokuRL.

[4] M. Towers, J. K. Terry, A. Kwiatkowski, et al., Gymnasium, Mar. 2023. doi: 10.5281/zenodo.
8127026. [Online]. Available: https://zenodo.org/record/8127025 (visited on 07/08/2023).

[5] P. Shinners, Pygame, http://pygame.org/, 2011.

[6] “3 million sudoku puzzles with ratings,” 2020. [Online]. Available: https://www.kaggle.com/
datasets/radcliffe/3-million-sudoku-puzzles-with-ratings.

[7] A. Mehta, “Reinforcement learning for constraint satisfaction game agents (15-puzzle, minesweeper,
2048, and sudoku),” arXiv preprint arXiv: 2102.06019, 2021.

9

