Large Language Model as Personality Classifier

Jakub Halmes
May 2024

1 Introduction

In recent years, large language models (LLMs) have become increasingly pro-
ficient at a wide range of natural language understanding tasks, such as for
example text sumarization, generation, or code completion. In this work, I try
to use them for personality classification, where the model has to predict a
personality class of a person based on the person’s text.

Using LLM for classification has been done before — even the original GPT
paper [1] included fine-tuning for classification. Another study [2] investigates
the performance of LLMs in semantic classification, noting that although large
models outperform smaller ones, they still fall short in tasks requiring deeper
understanding. Similar tasks are explored in several online notebooks, such as
in [3].

The motivation for this study is two-fold: firstly, to apply the model to
a classification task with more than three classes—here, 16 personality types.
Secondly, to gain hands-on experience in fine-tuning a large language model.

2 Personality classification

Personality classification involves predicting the personality traits of individuals
based on their written text. One popular framework for personality classification
is the Myers-Briggs Type Indicator (MBTT), which categorizes individuals into
one of 16 personality types based on four binary categories: Introversion (I)
vs. Extraversion (E), Sensing (S) vs. Intuition (N), Thinking (T) vs. Feeling
(F), and Judging (J) vs. Perceiving (P). For example, an individual might be
classified as an "INTJ” if they exhibit Introversion, Intuition, Thinking, and
Judging preferences.

3 Data

I used a dataset compiled from PersonalityCafe forum, which is available on
Kaggle [4]. The dataset contains person’s last 50 messages on the forum together
with their self-eported MBTI types. In total, the dataset contains 8675 entries,

which I split to train, validation, and test split with proportions 64%, 16%,
and 20%, respectively. The data was of good quality and I did only minimal
pre-processing.

3.1 Pre-processing

In all experiments I modified the links in the messages, and in some of the latter
experiments I replaced the personality classes present in the messages with a
placeholder.

3.1.1 Removing links

The forum messages frequently included links to external websites; however,
these links generally had little relevance to the classification task. Additionally,
messages containing these links tended to be excessively lengthy. Nonetheless,
understanding the types and frequency of links a person uses could be relevant
for classification purposes.

To shorten the links while still keeping some relevant information, I replaced
them with a placeholder containing the website name, but stripped of other
details. So, for example, http://wallpaperpassion.com/upload/23700/friendship-
boy-and-girl-wallpaper.jpg was replaced with [WALLPAPERPASSION_COM_LINK].
This was done in all experiments.

3.1.2 Removing personality classes

Apart from links, the messages often contained some mention of personality
types themselves. This comes from the nature of the forum, which is centered
around personality types. Here’s an example of such message:

"Is there one? For example, I am an INFP, and I grew up in a
houshold where my mom was an INFP and my dad was an ENFP.
My brother turned out an ESFP. Any correlations with you guys?”

This is problematic, as the dataset may contain the correct answers. I fix
this issue by replacing these occurences with a [redacted] string. Unfortunately,
I only realized this after training the first model, so unless stated otherwise, the
experiments were done on data without this modification.

4 Fine-tuning

I fine-tuned the 4-bit quantized Gemma7B model for one epoch using data that
included several messages combined with a task-specific prompt and the correct
personality label. The training was performed on a P100 GPU available on
Kaggle, taking approximately 8-10 hours for the epoch.

Due to memory constraints, I divided each original data point, which con-
tained 50 messages, into four new data points. These consisted of 12, 12, 12,
and 14 messages each.

5 Evaluation

The evaluation consists of several parts: Traditional approaches, base models
and fine-tuned models.

5.1 Traditional approaches

Traditional approaches like Support Vector Machines (SVM), Naive Bayes, and
Random Forests with TfIDF vectorization serve as baseline models in our eval-
uation. These methods are widely used in text classification tasks due to their
simplicity, speed, and often surprisingly good performance.

Model Accuracy (%)
SVM 63.52
Random Forest 48.53
Naive Bayes 21.90

Table 1: Accuracy of Traditional Approaches

I also evaluated these approaches on data with replaced mentions of person-
ality classes, as described in|3.1.2

Model Accuracy (%)
SVM 40.98
Random Forest 27.72
Naive Bayes 21.50

Table 2: Accuracy of Traditional Approaches with [redacted] personality classes.

5.2 Prompt

One of the most important part of this project was to come up with a good
prompt to use for the LM, which would help elicit the desired behavior. To find
the best prompt, I experimented with Gemma before any training, using both
manual inspection of the answers and calculating the accuracy on the evaluation
set. The final prompts used are shown in Appendix [A]

5.3 Base models

First, the language models were evaluated without any additional fine-tuning.

The results on 2B models indicate that the quantization does not hurt per-
formance too much, and it’s reasonable to use the quantized model. Due to
compute limitations, evaluating 7B version without quantization was not possi-
ble.

Model Accuracy (%)

Gemma-2B 15.45
Gemma-2B q. 14.47
DaVinci 28.93
Gemma-7B q. 44.90

Table 3: Accuracy without fine-tuning

The DaVinci model was evaluated through the OpenAl API El

5.4 Fine-tuned models

In this section, I present the results of the fine-tuned models. This includes the
initial fine-tuning and two additional training configurations.

The accuracy of the initially fine-tuned model was 82.07%, roughly dou-
bling the performance of the model without any fine-tuning. This impressive
performance led me to uncover the issue with the training data described in
Section |3.1.2] Evaluating the same model on the modified data resulted in ac-
curacy 41.10%, which was about the same as with SVM. After re-training the
model on the modified data, the accuracy was increased to 50.95%. This shows
that the huge improvement of the first fine-tuned model came from focusing on
occurences of the personality classes in the text.

Finally, I modified the label format to provide the model with more flexibility
in predicting personality classes, rather than constraining it to predict the exact
four-letter MBTT types. This change was motivated by the potential difficulty of
exact letter prediction, especially considering tokenization issues. Specifically, I
replaced the labels with comma-separated lists of the full descriptive words: for
example, ISTJ was converted to Introversion, Sensing, Thinking, Judging. For
each personality axis, the prediction is determined by which label stem appears
first in the model’s response (e.g., ”introv” or ”extrov” for the Introversion-
Extroversion axis). The original personality classes in the output were replaced
with a [redacted] label to maintain confidentiality. Details of the prompt used
are illustrated in Figure

The model achieved an accuracy of 48.93%. This suggests that the ex-
panded and less constrained option space did not hinder its performance.

IWhich cost roughly $6.50.

Model Configuration Accuracy (%)

Original fine-tuning 82.07
Evaluated with [redacted] 41.10
Retrained with [redacted] 50.95
Labels replaced with words + [redacted] 48.93

Table 4: Accuracy of the fine-tuned model in different configurations.

6 Conclusion

In this work I explored the use of (LLMs) for personality classification based on
the Myers-Briggs Type Indicator (MBTT). Using a dataset from the Personali-
tyCafe forum, I evaluated both traditional machine learning methods and fine-
tuned LLMs. Initial high accuracy with trained LLMs was due to unintended
leakage of personality class information in the training data. After address-
ing this issue, the fine-tuned models still outperformed traditional approaches,
though with a reduced margin.

A Prompts

I used two prompts: one for predicting the exact personality class label, shown
in Figure|[l] and the other one with more relaxed prediction of comma-separated
words describing the classes, shown in Figure [2]

In both cases, the {text} placeholder is replaced with the actual forum mes-
sages. During evaluation, {personality_class} is always replaced with empty
string, and the model has to continue in this prompt. During training, the in-
put is the part up to ### Response, and the actual personality class is used
as the desired continuation of the model.

The templates differ in the text that replaces {personality_class} placeholder:
in the first case, the exact label is used, such as ISTJ, while in the latter one
it’s replaced with Introversion, Sensing, Thinking, Judging.

Input

Person’s forum posts separated by |||:

{text}

Personality classification

(options: ISTJ, ISFJ, INFJ, INTJ, ISTP, ISFP, INFP,
INTP, ESTP, ESFP, ENFP, ENTP, ESTJ, ESFJ, ENFJ, ENTJ).
First letter: Introversion (I) - Extroversion (E)
Second letter: Intuition (N) - Sensing (S)

Third letter: Thinking (T) - Feeling (F)

Fourth letter: Judging (J) - Perceiving (P)

From these options, the person can be best classified as

Response
{personality_class}

Figure 1: Prompt template with exact classification.

Input

Person’s forum posts separated by |||: {text}
Personality classification.

First axis: Introvert - Extrovert

Second axis: Intuition - Sensing

Third axis: Thinking - Feeling

Fourth axis: Judging - Perceiving

On each of these axis (separated by commas)
the person can be best classified as

Response

{personality_class}

Figure 2: Prompt template with relaxed classification.

B Installation instructions

To run the code, first install the required packages using the provided ‘conda.yaml‘
file. You can do this by executing the following command in your terminal:

conda env create -f conda.yaml

References

[1] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018. [Online]. Avail-
able: |https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/
language-unsupervised /language_understanding_paper.pdf

[2] W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment analysis
in the era of large language models: A reality check. arxiv,” arXiv preprint
arXiv:2305.15005, 2023.

[3] Lucamassaron, “Fine-tune gemma 7b it for sentiment analysis (tpu),” Feb
2024. [Online]. Available: |https://www.kaggle.com/code/lucamassaron/
fine-tune-gemma- 7b-it-for-sentiment-analysis- tpu

[4] M. J, “(mbti) myers-briggs personality type dataset,” Sep 2017. [Online].
Available: https://www.kaggle.com/datasets/datasnaek /mbti-type

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://www.kaggle.com/code/lucamassaron/fine-tune-gemma-7b-it-for-sentiment-analysis-tpu
https://www.kaggle.com/code/lucamassaron/fine-tune-gemma-7b-it-for-sentiment-analysis-tpu
https://www.kaggle.com/datasets/datasnaek/mbti-type

	Introduction
	Personality classification
	Data
	Pre-processing
	Removing links
	Removing personality classes

	Fine-tuning
	Evaluation
	Traditional approaches
	Prompt
	Base models
	Fine-tuned models

	Conclusion
	Prompts
	Installation instructions

