Security and Fairness of Deep Learning

Convolutional Neural Networks
Spring 2020

Neural network architectures

0
XU/

xe»’x{
;.;.

s
b
o§

output layer

input layer
hidden layer 1 hidden layer 2

* Full connectivity is a problem for image inputs

 Scalability: 200x200x3 images imply 120,000 weights per neuron in first
hidden layer

* Overfitting: Too many parameters would lead to overfitting

Convolutional Neural Networks [Lecun 1989]

 Specialized to the case where inputs are images (more generally, data
with a grid-like topology)

e Sparse connections, parameter sharing

* Efficient to train
* Avoid overfitting

* Generalize across spatial translations of input
e By sliding “filters” that learn distinct patterns (edges, blobs of color etc.)

Key idea

* Replace matrix multiplication in neural networks with convolution

* Everything else remains the same

Edge detection by convolution

1 - Output

Flgure 96 oooooooooooooooo

2D Convolution

Input
Kernel
c d
w
g h
Y
k l
v Output
_>
aw + bxr + bw + cx cw + dx
ey + fz fy + gz gy + hz
ew + fzr + fw + gz gw + hz
wy + gz Jjy + kz ky + Iz

Sliding filters (kernels)

Fig. Goodfellow et al. 2016

Sparse connectivity

sase (1) @ @ @

connections
due to small
convolution
emel (+) (=) @) (O

Dense
connections

Figure 9.2

Sparse connectivity

e QO @O

connections
due to small

convolution
emel - () @) @) @) &

Dense
connections

oooooooooooooooo

Growing receptive fields

Parameter sharing

Convolution @ e @ @
shares the same
parameters
across all spatial ° °
locations
Traditional @ @ @ @
matrix
multiplication
does not share @ @ @
any parameters

Flg ure 9 . 5 (Goodfellow 2016)

Edge detection by convolution

1 - Output

Flgure 96 oooooooooooooooo

Convolutional Neural Networks

4

* A ConvNet is made up of Layers

* Every Layer transforms an input 3D volume to an output 3D volume with
some differentiable function that may or may not have parameters

* Neurons in a layer will only be connected to a small region of the layer
before it

Example ConvNet architecture

RELU RELU

RELU RELU

)
ol
L
14
-
L
L
1d

|

— - A 5

lCONV

CONV

N

Iv;: MY A

lCONV

) (3 U YL

CONV

, POOL, FC

’

CONYV, RELU

Layers:

Convolutional layer

Connectivity

- —=00000

A
IE

3

* An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example
volume of neurons in the first Convolutional layer.

* Each neuron in the convolutional layer is connected only to a local region in the input
volume spatially, but to the full depth (i.e. all color channels).

* If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will

have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights
(and +1 bias parameter).

* There are multiple neurons (5 in this example) along the depth, all looking at the same
region in the input; these are part of different filters.

Spatial arrangement

e Output volume depends on
e Depth (Number of filters) K
 Spatial extent of filters (receptive field) F
e Stride S
 Amount of zero-padding P

Spatial arrangement

stride =1 stride = 2 kernel
o
0 || 1 0 0| I | | | A |
Zero pad Zero pads Zero pad

* One spatial dimension (x-axis), one neuron with a receptive field size
of F = 3, the input size is W =5, and there is zero paddingof P=1

* Number of output neurons = (W-F+2P)/S+1

* Often P=(F-1)/2 when S=1; ensures number of output neurons = W

Spatial arrangement

* Depth
e Number of filters

* Each filter learns to look for a pattern in the input (e.g., first CONV layer filters
may activate in the presence of differently oriented edges or blobs of color)

Spatial arrangement

e Stride

* Step size with which we slide the filters

* When the stride is 1 then we move the filters one pixel at a time. When the
stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a time
as we slide them around

Spatial arrangement

e Zero-padding
* Pad the input volume with zeros around the border
* Allows us to control the spatial size of the output volumes

Parameter sharing

* Assumption

* If one feature is useful to compute at some spatial position (x,y), then it
should also be useful to compute at a different position (x2,y2)

* All neurons in the same depth slice use the same weights and bias

Convolution Demos

e http://cs231n.github.io/convolutional-networks/

* http://setosa.io/ev/image-kernels/

http://cs231n.github.io/convolutional-networks/
http://setosa.io/ev/image-kernels/

Example ConvNet architecture

RELU RELU

RELU RELU

)
ol
L
14
-
L
L
1d

—_—

— - A 5

lCONV

adY YAU'SENEN"

CONV

N

Iv:,., 1R TN

lCONV

CONV

Layers: CONV, RELU, POOL, FC

Max pooling

224x224x64 | |
112x112x64 Single depth slice
A
ﬂ, X 1 1 2 4
max pool with 2x2 filters
onmeN 7 | 8 and stride 2
l A 3 2 1 O
1 | 2 (BT
224 = q T 112
—~— ownsampling _
112 y

224

Reduce the amount of parameters and computation in the
network, and hence to also control overfitting

Example ConvNet for CIFAR-10

* INPUT [32x32x3] will hold the raw pixel values of the image, in this case an
image of width 32, height 32, and with three color channels R,G,B.

* CONV layer will compute the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume. This may
result in volume such as [32x32x12] if we decided to use 12 filters.

* RELU layer will apply an elementwise activation function, such as
the max(0,x). This leaves the size of the volume unchanged ([32x32x12]).

 POOL layer will perform a downsampling operation along the spatial
dimensions (width, height), resulting in volume such as [16x16x12].

e FC (i.e. fuIIy-connected} layer will compute the class scores, resulting in
vlolume of size [1x1x10], where each of the 10 numbers correspond to a
class score.

CNN

* \Visua
* \Visua
* \Visua

Visualization

20 _JC _JC I 34
/ Jolooewr|
/ N /

ize activations

ize filters/kernels
ize inputs maximally activating some neuron or layer

Visualize activations

Activations of first convolution layer (left) and 5t convolution layer of AlexNet .

Source: http://cs231n.github.io/understanding-cnn/

http://cs231n.github.io/understanding-cnn/

Visualize filters

First CONV layer filters in AlexNet
Source: http://cs231n.github.io/understanding-cnn/

http://cs231n.github.io/understanding-cnn/

Visualize inputs maximizing activation
'l”. '

~ -M!@

Maximally activating inputs for 6 neurons of 5% pool layer of AlexNet

Source: http://cs231n.github.io/understanding-cnn/

http://cs231n.github.io/understanding-cnn/

Acknowledgment

Based in part on material from
e Stanford CS231n http://cs231n.github.io/
* Spring 2019 course

* Deep Learning book

http://cs231n.github.io/

Real-world example

* The Krizhevsky et al. architecture that won the ImageNet challenge in 2012
accepted images of size [227x227x3].

* On the first Convolutional Layer, it used neurons with receptive field
size F=11, stride S=4 and no zero padding P=0.

 Since (227 - 11)/4 + 1 =55, and since the Conv layer had a depth of K=96,
the Conv layer output volume had size [55x55x96)].

* Each of the 55*55*%96 neurons in this volume was connected to a region of
size [11x11x3] in the input volume.

* Moreover, all 96 neurons in each depth column are connected to the same
[11x11x3] region of the input, but of course with different weights.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Real-world example

* Number of parameters

* Without parameter sharing

e 55*55%96 = 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights
and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first
layer of the ConvNet

* With parameter sharing

* The first Conv Layer in our example would now have only 96 unique set of weights (one
for each depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or 34,944
parameters (+96 biases).

