Security and Fairness of Deep Learning

Convolutional Neural Networks
Spring 2020



Neural network architectures
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* Full connectivity is a problem for image inputs

 Scalability: 200x200x3 images imply 120,000 weights per neuron in first
hidden layer

* Overfitting: Too many parameters would lead to overfitting



Convolutional Neural Networks [Lecun 1989]

 Specialized to the case where inputs are images (more generally, data
with a grid-like topology)

e Sparse connections, parameter sharing

* Efficient to train
* Avoid overfitting

* Generalize across spatial translations of input
e By sliding “filters” that learn distinct patterns (edges, blobs of color etc.)



Key idea

* Replace matrix multiplication in neural networks with convolution

* Everything else remains the same



Edge detection by convolution
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2D Convolution
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Fig. Goodfellow et al. 2016



Sparse connectivity
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Sparse connectivity
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Growing receptive fields




Parameter sharing
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Flg ure 9 . 5 (Goodfellow 2016)



Edge detection by convolution
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Convolutional Neural Networks
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* A ConvNet is made up of Layers

* Every Layer transforms an input 3D volume to an output 3D volume with
some differentiable function that may or may not have parameters

* Neurons in a layer will only be connected to a small region of the layer
before it




Example ConvNet architecture
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Convolutional layer



Connectivity
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* An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example
volume of neurons in the first Convolutional layer.

* Each neuron in the convolutional layer is connected only to a local region in the input
volume spatially, but to the full depth (i.e. all color channels).

* If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will

have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights
(and +1 bias parameter).

* There are multiple neurons (5 in this example) along the depth, all looking at the same
region in the input; these are part of different filters.



Spatial arrangement

e Output volume depends on
e Depth (Number of filters) K
 Spatial extent of filters (receptive field) F
e Stride S
 Amount of zero-padding P



Spatial arrangement
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* One spatial dimension (x-axis), one neuron with a receptive field size
of F = 3, the input size is W =5, and there is zero paddingof P=1

* Number of output neurons = (W-F+2P)/S+1

* Often P=(F-1)/2 when S=1; ensures number of output neurons = W



Spatial arrangement

* Depth
e Number of filters

* Each filter learns to look for a pattern in the input (e.g., first CONV layer filters
may activate in the presence of differently oriented edges or blobs of color)



Spatial arrangement

e Stride

* Step size with which we slide the filters

* When the stride is 1 then we move the filters one pixel at a time. When the
stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a time
as we slide them around



Spatial arrangement

e Zero-padding
* Pad the input volume with zeros around the border
* Allows us to control the spatial size of the output volumes



Parameter sharing

* Assumption

* If one feature is useful to compute at some spatial position (x,y), then it
should also be useful to compute at a different position (x2,y2)

* All neurons in the same depth slice use the same weights and bias



Convolution Demos

e http://cs231n.github.io/convolutional-networks/

* http://setosa.io/ev/image-kernels/



http://cs231n.github.io/convolutional-networks/
http://setosa.io/ev/image-kernels/

Example ConvNet architecture

RELU RELU

RELU RELU

)
ol
L
14
-
L
L
1d

—_—

— - A 5

lCONV

adY YAU'SENEN"

CONV

N

Iv:,., 1R TN

lCONV

CONV

Layers: CONV, RELU, POOL, FC



Max pooling
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Reduce the amount of parameters and computation in the
network, and hence to also control overfitting




Example ConvNet for CIFAR-10

* INPUT [32x32x3] will hold the raw pixel values of the image, in this case an
image of width 32, height 32, and with three color channels R,G,B.

* CONV layer will compute the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights
and a small region they are connected to in the input volume. This may
result in volume such as [32x32x12] if we decided to use 12 filters.

* RELU layer will apply an elementwise activation function, such as
the max(0,x). This leaves the size of the volume unchanged ([32x32x12]).

 POOL layer will perform a downsampling operation along the spatial
dimensions (width, height), resulting in volume such as [16x16x12].

e FC (i.e. fuIIy-connected} layer will compute the class scores, resulting in
vlolume of size [1x1x10], where each of the 10 numbers correspond to a
class score.




CNN
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Visualize activations

Activations of first convolution layer (left) and 5t convolution layer of AlexNet .

Source: http://cs231n.github.io/understanding-cnn/



http://cs231n.github.io/understanding-cnn/

Visualize filters

First CONV layer filters in AlexNet
Source: http://cs231n.github.io/understanding-cnn/



http://cs231n.github.io/understanding-cnn/

Visualize inputs maximizing activation
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Maximally activating inputs for 6 neurons of 5% pool layer of AlexNet

Source: http://cs231n.github.io/understanding-cnn/



http://cs231n.github.io/understanding-cnn/
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Real-world example

* The Krizhevsky et al. architecture that won the ImageNet challenge in 2012
accepted images of size [227x227x3].

* On the first Convolutional Layer, it used neurons with receptive field
size F=11, stride S=4 and no zero padding P=0.

 Since (227 - 11)/4 + 1 =55, and since the Conv layer had a depth of K=96,
the Conv layer output volume had size [55x55x96)].

* Each of the 55*55*%96 neurons in this volume was connected to a region of
size [11x11x3] in the input volume.

* Moreover, all 96 neurons in each depth column are connected to the same
[11x11x3] region of the input, but of course with different weights.


http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Real-world example

* Number of parameters

* Without parameter sharing

e 55*55%96 = 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights
and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first
layer of the ConvNet

* With parameter sharing

* The first Conv Layer in our example would now have only 96 unique set of weights (one
for each depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or 34,944
parameters (+96 biases).



