
Given our assumption that p > q, the probability drops exponentially as the number of blocks the 
attacker has to catch up with increases.  With the odds against him, if he doesn't make a lucky 
lunge forward early on, his chances become vanishingly small as he falls further behind.

We now consider how long the recipient of a new transaction needs to wait  before being 
sufficiently certain the sender can't change the transaction.  We assume the sender is an attacker 
who wants to make the recipient believe he paid him for a while, then switch it to pay back to 
himself after some time has passed.  The receiver will be alerted when that happens, but the 
sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly before 
signing.  This prevents the sender from preparing a chain of blocks ahead of time by working on 
it continuously until he is lucky enough to get far enough ahead, then executing the transaction at 
that moment.  Once the transaction is sent, the dishonest sender starts working in secret on a 
parallel chain containing an alternate version of his transaction.

The recipient waits until the transaction has been added to a block and  z blocks have been 
linked  after  it.   He  doesn't  know the  exact  amount  of  progress  the  attacker  has  made,  but 
assuming the honest blocks took the average expected time per block, the attacker's potential 
progress will be a Poisson distribution with expected value:

=z q
p

To get the probability the attacker could still catch up now, we multiply the Poisson density for 
each amount of progress he could have made by the probability he could catch up from that point:

∑
k=0

∞ k e−

k !
⋅{q / p z−k  if k≤ z

1 if k z}
Rearranging to avoid summing the infinite tail of the distribution...

1−∑
k=0

z k e−

k !
1−q / p z−k 

Converting to C code...

#include <math.h>
double AttackerSuccessProbability(double q, int z)
{
    double p = 1.0 - q;
    double lambda = z * (q / p);
    double sum = 1.0;
    int i, k;
    for (k = 0; k <= z; k++)
    {
        double poisson = exp(-lambda);
        for (i = 1; i <= k; i++)
            poisson *= lambda / i;
        sum -= poisson * (1 - pow(q / p, z - k));
    }
    return sum;
}
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