
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Automatic Syntactic Analysis
for Real-World Applications

PHD THESIS

Vojtěch Kovář

Brno, Spring 2014

Declaration

Hereby I declare, that this thesis is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

ii

Acknowledgement

I would like to give thanks to my supervisor Aleš Horák, my former super-
visor Karel Pala and all my colleagues from the NLP Centre for cooperation
and great working atmosphere. Many thanks also belong to my wife Jana,
two daughters and the whole family for support and tolerance, without
which this work would never be written. Last but not least, thanks to my
colleagues and superiors from Lexical Computing for their patience and for
all the tasks that they did instead of me during writing this work.

iii

Abstract

Syntactic analysis (parsing) of natural languages is a subfield of natural
language processing (NLP) that is often claimed to be a “corner stone” of
the area, a necessary base for any advanced language processing and real
understanding. Syntactic analysis deals with revealing the sentence struc-
ture, language units bearing meaning and relationships among them; it is
hard to imagine real language understanding without this information. On
the other hand, in current practical ”intelligent” applications, syntactic pro-
cessing is often substituted by purely stochastic methods. There are even
visible opinions in the NLP community claiming that syntactic analysis is
not really needed in practical applications.

In this work, we analyse the current status of the field and identify the
particular problems that it is suffering from. Based on this analysis, we pro-
pose next directions that the research of parsing should accommodate. We
discuss methodology and evaluation, manual annotation procedures and
approaches to design and implementation of the natural language parsing
tools.

Then, we describe results of our research within these directions. They
include a new format for manual syntactic annotation and two application
oriented tools for automatic syntactic analysis. Many application usages of
these tools are reported which supports our methodology considerations.
Evaluation of the practical outputs of the work is provided, and evaluation
methodology problems are discussed.

iv

Keywords

syntactic analysis, Czech, parser, SET, application, bushbank, EFA, punctu-
ation detection, word sketch, terminology, authorship, authorship verifica-
tion, grammar checking, collocation extraction, treebank, sketch grammar,
information extraction

v

Contents

1 Introduction: Natural language processing challenges 4
1.1 Syntactic analysis of formal and natural languages 5
1.2 Goals of the work . 5
1.3 Structure of the thesis . 6
1.4 Author’s background . 6
1.5 Natural language processing challenges: A sample 7

1.5.1 Information retrieval 7
1.5.2 Information extraction 8
1.5.3 Question answering 9
1.5.4 Automatic reasoning 10
1.5.5 Authorship recognition 11
1.5.6 Grammar checking . 11
1.5.7 Collocation extraction 12
1.5.8 Terminology extraction 12
1.5.9 Hidden applications 13

2 Automatic syntactic analysis of natural languages 15
2.1 Preprocessing . 15
2.2 Encoding syntactic information 16

2.2.1 Dependency formalism 17
2.2.2 Phrase structure formalism 18
2.2.3 Dependency vs. phrase-structure 19
2.2.4 Partial syntactic analysis 23
2.2.5 Advanced formalisms 24

2.3 State of the art parsing methods 26
2.4 Treebanks and parsing evaluation 28
2.5 Criticism of current methods 30

2.5.1 Low usage . 31
2.5.2 Application-sparse output 31
2.5.3 Application-free evaluation methodology 33
2.5.4 Technical aspects . 36
2.5.5 You aren’t gonna need it 37

3 Bushbank . 41

1

3.1 More criticism of treebanks 41
3.1.1 Price . 41
3.1.2 Age and domain specificity 42
3.1.3 One tree per sentence 42
3.1.4 Senseless annotations 43
3.1.5 Inconsistent and counterintuitive annotations 43

3.2 Syntactic bush . 47
3.2.1 Formal description . 47
3.2.2 Linguistic interpretation 48
3.2.3 Implementation . 48
3.2.4 Annotation schema . 49
3.2.5 Annotation process . 50
3.2.6 Methodological aspects 51
3.2.7 Technical details . 53

3.3 Case studies – Czech and English bushbank 54
3.4 Usages . 55
3.5 Conclusions . 57

4 Sketch grammar: A shallow approach to syntax 59
4.1 Basic formalism . 59

4.1.1 Query language grammar 60
4.1.2 Processing directives 62
4.1.3 Coverage . 64

4.2 Extensions . 64
4.2.1 Multiword sketches 64
4.2.2 Bilingual word sketches 66
4.2.3 Word sketches for terminology extraction 70

4.3 Conclusions . 70
5 SET – a light-weight parsing system 72

5.1 Initial considerations . 72
5.2 Hybrid trees . 74
5.3 Analysis by pattern matching 76

5.3.1 Parsing algorithm . 77
5.3.2 Rule syntax . 79

5.4 Usage . 84
5.5 Conclusions . 86

6 Applications . 87
6.1 Information extraction for Czech 87
6.2 Automatic reasoning for Czech 91
6.3 Authorship recognition of Czech texts 92

6.3.1 Current approach . 93

2

6.3.2 Syntactic features . 93
6.3.3 Evaluation . 94

6.4 Grammar checking for Czech 96
6.4.1 Related work . 96
6.4.2 Punctuation detection with the SET system 97
6.4.3 Subject-predicate agreement with the SET system . . 99

6.5 Collocation extraction . 102
6.5.1 Word sketch evaluation I 102
6.5.2 Gold standard and word sketches from parsers . . . 103
6.5.3 Word sketch evaluation II – using the gold standard . 105
6.5.4 Parser comparison . 107

6.6 Terminology extraction . 108
6.6.1 Evaluations . 109
6.6.2 Bilingual term extraction 110

6.7 Automatic extraction of lexical semantic information 111
6.8 Valency frame induction . 111
6.9 Czech phrase declension . 113
6.10 Anaphora resolution . 113
6.11 Conclusions . 114

6.11.1 Note on parsing evaluation methodology 115
7 Conclusions . 117
A Czech bushbank manual for annotators 137
B English bushbank manual for annotators 143
C List of author’s publications . 148

C.1 Peer reviewed journal papers 148
C.2 Book chapters . 148
C.3 Peer reviewed conference papers 148
C.4 Other papers . 152
C.5 Software . 153

3

Chapter 1

Introduction: Natural language processing challenges

As the use of digital technologies becomes more and more integral part of
our lives, there is a strong need for people who can understand machines,
as well as machines that can understand people (at least a bit). The develop-
ment of such machines is the object of research in many scientific and tech-
nical fields, ranging from human-computer interaction and virtual reality,
through design of graphical interfaces, to artificial intelligence and natural
language processing. The aim of natural language processing (NLP) is to
learn how natural languages work and exploit this knowledge in practical
applications that will serve for easier everyday communication with our
machine partners.

Although we might not notice, we work with NLP applications every
day: We write our text messages with T9, we listen to synthetic speech at
railway stations, we google for instant information, we let Word check our
language by spelling checker, we use Google Translate for languages that
we do not understand. . . All of these applications exploit a certain level of
understanding of how language works. On the other hand, there are de-
sirable applications for which we do not have enough knowledge yet: You
cannot chat with a bus ticket automaton about the best way to get to your
old friend whose address you do not know exactly (although sometimes
you can use a clever interactive map), the Google machine translation still
makes severe stupid mistakes, the spelling checker is not able to check your
style nor reasonability of your text. . . Although the current applications
may seem relatively intelligent, there is a lot of potentially useful things
that are still not possible with the current level of knowledge.

Syntactic analysis (parsing) is a subfield of NLP that is often claimed to
be a “corner stone” of the area, a necessary base for any advanced language
processing and real understanding. Syntactic analysis deals with revealing
the sentence structure, language units bearing meaning and relationships
among them, and it is hard to imagine real language understanding without
this information. On the other hand, it is rarely used within current practical

4

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

applications and there are visible opinions in the NLP community claiming
that it is not really needed.

This looks like an interesting discrepancy between theory and practice,
amplified by the amount of effort that has already been invested into the re-
search of automatic syntactic analysis. This research has its own dedicated
conferences; hundreds of different parsing algorithms and approaches to
syntactic analysis were described; millions of dollars have been invested
worldwide into manually annotated syntactic data for training and test-
ing. . . without a visible success in form of a widely used application. One
can say it is a “l’art pour l’art” in the world of natural language processing,
at least up to now.

1.1 Syntactic analysis of formal and natural languages

Syntactic analysis of natural languages is different from syntactic analysis
of formal languages (e.g. programming languages or formal descriptions).
The main difference is massive ambiguity of natural languages on all lev-
els of analysis – words, as well as sentences can have multiple meanings.
In sentence “I saw a man with a telescope”, the syntactic interpretation de-
cides the meaning of the sentence – if it is me who holds the telescope, or
the other man. This is an illustration of the famous “PP-attachment” prob-
lem – if the prepositional phrase (PP) “with a telescope” should be attached
to “saw” or to “man”.

Such ambiguities are present in most natural language sentences. Most
of them can be resolved correctly and even unconsciously by a human, but
for automatic processing they present a complex problem. Besides other
issues, such as dealing with large vocabulary of natural languages, syntactic
analysis aims at resolving such ambiguities and providing correct structural
information to following processing levels, namely analysis of meaning.

1.2 Goals of the work

In this work, we analyse current status of the field of natural language syn-
tactic analysis and spell out the particular problems that it is suffering from.
Based on this analysis, we propose new directions that the research should
accommodate, in terms of methodology and evaluation, manual annotation
procedures and preferable approaches to parser design.

We describe results of our research within these new directions, namely

• new approach to manual annotation of natural language syntax

5

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

• new parsing systems tailored to be used directly in various types of
applications
• prototypes of the particular applications that have already made ad-

vantage of the syntactic information provided by the automatic tools

As we will see, the successful usage in applications strongly supports
our initial methodology considerations, different from the usual state-of-
the art approach.

1.3 Structure of the thesis

The text is structured as follows: In the introduction, we list some of the
natural language applications that may benefit from syntactic information
from natural language parsing. The list does not aim to be complete, its
purpose is rather illustrative. The next chapter summarizes the main trends
in the state of the art syntactic analysis and discusses its main problems.
Based on this criticism, the following four chapters describe

• a new approach to manual syntactic annotation
• a specialized parsing machinery already used in a commercial sys-

tem, and its further development
• a newly proposed parsing system
• usage of the parsing information within the practical applications

listed in the introduction

These four chapters present the main contribution of this work. As some
of the topics range across different sub-fields in the natural language pro-
cessing area, the presented results are often collaborative; we always high-
light this fact at the respective sections and provide the credits of the col-
laborators.

1.4 Author’s background

The author of this thesis is based at the NLP Centre of the Faculty of In-
formatics at Masaryk University; as a student from 2004, as a research em-
ployee from 2006. Within the scope of that work, the author took part in sev-
eral research projects exploiting and developing automatic syntactic anal-
ysis, funded by Czech government and European union. From the begin-
ning, he was also involved in university collaboration with Lexical Com-
puting Ltd., English commercial company that makes research related busi-

6

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

ness in the field of corpus and computational linguistics, with a main prod-
uct called Sketch Engine.1 From 2012, the author is also an employee of the
Czech branch of the Lexical Computing company.

As firstly collaborator and then employee of this company, a significant
part of author’s work has been development of friendly user interfaces and
communication with the customers – so within these 8 years, the author got
very familiar with needs, ideas and attitudes of many language technology
users. He has integrated that experience into this work as well, so the point
of view presented in this text may be often a (hopefully contributive) mix
of author’s academic and commercial stances.

Based in the Czech Republic, the first natural language for doing re-
search in natural language processing is (naturally) Czech. So it is in this
work: the described systems and annotation principles were initially devel-
oped for Czech, then for English, then for other languages. Czech is a free
word order, synthetic language from the Slavic language family, with very
rich morphology (which may have influenced some of the initial consider-
ations within the research). However, we are confident that the presented
results are language independent to a significant extent, and we will discuss
the aspect of universality of the achieved results in the respective sections.

1.5 Natural language processing challenges: A sample

This part provides a non-exhaustive overview of challenges in natural lan-
guage processing – tasks that are not sufficiently solved (although partial
solutions exist in most cases), and that can take advantage from automatic
syntactic analysis, if it was in a suitable shape. The particular selection is
motivated by the fact that we have been working on improving the tasks
using automatic syntactic analysis.

1.5.1 Information retrieval

This is the “Google task”: look up the documents most relevant to a given
query. Google (followed by other search engines) addresses this problem
successfully by combining metrics measuring the relevance of a document
to a particular query, based on occurrences of query words (and their stems
and synonyms) within a particular document [2], with the PageRank algo-
rithm [135] sorting the best quality pages to the top.

1. www.sketchengine.co.uk

7

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

In time, people have accommodated to the way the search works and
especially in the young generation, they typically do not have problems to
find anything. Also, there are billions of searches per day2 and huge com-
mercial interests, so the system is set up really well within the scope of
the current possibilities. However, there are still situations where more so-
phisticated processing would help to obtain more precise results, such as
in case of queries like “market bulls”. From the query, especially from the
relationship between the two words, it is clear that we are not interested
in information about bull markets and bear markets which are practically
the only results we are offered, but rather information about the company
named Market Bulls or business with real bulls, that we can get by a related
query “market bulls cows”.

Another room for making the search more intelligent lies in process-
ing rather naturally formed questions, such as “Who defeated Lenin?”. We
would expect documents where Lenin is the object of defeating and the in-
formation about subject is present as well, e.g. something similar to what
we can get for query “marshal who defeated Lenin”, in quotes. Instead, we
are shown a number of documents where either the subject is missing, or
Lenin is not at all the object of defeating.

1.5.2 Information extraction

The goal of information extraction (not to be confused with information re-
trieval) is to extract formal knowledge, e.g. in form of RDF [76] or other
computer database format, from free text in natural language. The informa-
tion can be general (“extract all we can”), or very specialized, like spotting
possible interactions among proteins from biochemical papers [118].

Although it may seem that syntactic relations such as subject, object,
modifier etc. are necessary for gaining semantic relations that could be im-
ported into a database, information from syntactic analysis is rarely used in
this task. For illustration, the Wikipedia page for “Information extraction”3

does not mention syntactic analysis at all; rather than that, simple regular
expression approaches or machine learning methods are used extensively.
There are only a few papers that report using automatic syntactic analy-
sis within this task [118, 120]. Both of these papers reported improvements
when using parsing, which supports our confidence that using syntactic

2. www.statisticbrain.com/google-searches
3. en.wikipedia.org/wiki/Informationi_extraction – 1700 words, visited in
January 2014

8

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

analysis shall be beneficial in the field and should be investigated more
thoroughly within this type of applications.

1.5.3 Question answering

Question answering whose aim is to generate proper answers to natural
language questions from user, according to a knowledge base (possibly also
in natural language, e.g. the web), relates to the information retrieval and
information extraction applications. In some cases, it is understood in the
same way as information retrieval with the only difference being the fact
that the input is a question in natural language, rather than a query con-
taining keywords. Also, most of the current question answering systems
are based on this principle – they extract keywords from the input ques-
tion, then use Google or another search engine, and simply return to the
user what the search engine returns (e.g. [11]).

Our interpretation of the question answering task is more complex. We
consider extracting the answer from the document as an integral part of the
task; also the answer should be as short as possible, without losing mean-
ing. More precisely, the correct answer is a string forming a phrase, clause,
sentence or group of sentences, any substring of which is not judged as
correct answer.

This part of the task is sometimes addressed by using the two-line snip-
pets as the answer that Google (or other search engines) returns as part of
the result list. These parts of the found documents always contain the key-
words from the query, however, this does not imply that they contain the
answer to the question, as illustrated on the Lenin example above, or sim-
ilar simple queries in form of questions, such as “who has Koh-i-Noor?” –
the Google results contain parts of the documents that contain the words
“have” and “Koh-i-Noor” but they fail to find an answer, at least not in the
first results. Obviously, some advanced processing is needed here, such as
recognizing particular meaningful chunks in the document and labelling
them with types of questions they may be able to answer. Complete so-
lution of the question answering task would of course have to integrate
many more advanced features than this, including inter-sentential infer-
ence, anaphora resolution. However, using labelled syntactic chunks in-
stead of keywords may be the first step to improve the current question
answering systems.

9

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

1.5.4 Automatic reasoning

The goal of automatic reasoning in context of computer science and logic
usually means generating new formulas in a particular logical formalism
and a particular theory, given certain assumptions. Alternatively, it can be
viewed as verifying if a particular formula is correct – this is equivalent to
checking if that formula is in the set of valid formulas generated from the
assumptions. The best known example of such reasoning system is proba-
bly Prolog [25] that provides reasoning within the scope of predicate logic.

In context of natural language, automatic reasoning means roughly the
same, but within natural language instead of a logical formalism; it is also
called textual entailment. This means, generating new valid natural lan-
guage sentences, according to a set of another sentences in natural lan-
guage, sometimes referred to as knowledge base. A simple example fol-
lows:

• knowledge base: “Antonı́n Dvořák (September 8, 1841 – May 1, 1904)
was a Czech composer.”
• generated sentences:

◦ “Antonı́n Dvořák is dead.”
◦ “Antonı́n Dvořák was born in 1841.”
◦ “Antonı́n Dvořák wrote some pieces of music.”
◦ “Antonı́n Dvořák was Czech.”
◦ ...

The induced information may be further used in all of the previously
introduced challenges, making the information in the knowledge base (e.g.
web) more dense and increasing probability of giving the right answer.

So far, existing systems for natural language reasoning are rather exper-
imental. Among existing approaches, there is e.g.

• automatic translation of the natural language sentences into pred-
icate logic, doing inferences in predicate logic and translating the
results back to natural language [45, 117]
• the same process with more powerful Transparent intensional logic

[50, 107]
• using manual or stochastic transformation rules directly within nat-

ural language, without the formal logic as connection [168, 126]

All of these approaches need flexible automatic syntactic analysis, in
various shapes, as described in the respective papers. However, the task is
far from being solved so there is plenty of room for improvement.

10

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

1.5.5 Authorship recognition

Authorship recognition and verification aims at reliable automatic assign-
ment of author, to an anonymous piece of text (towards automatization of
forensic linguistics). The verification subtask is to decide if two anonymous
pieces of text were written by the same author or not. It is clear that the
tasks are equivalent to certain extent: if we had examples of many author’s
writing and a reliable authorship verification application, we would be able
to perform general authorship recognition; so we further specialize mainly
on the authorship verification task in context of this work.

A more general concept is stylometry – rather than deciding a particular
author, we may aim at different categories, e.g. age, education level or sex
of the author. In most cases, same methods can be used for all tasks of this
type.

Some research was done in this area, in most cases exploiting machine
learning methods [79] to extract a stylome – a set of features that character-
ize the author (or the selected category) – from the given text. The features
are usually linguistically motivated, such as ratio of short words, usage of
specific words or parts of speech etc. Previous research also showed at-
tempts to include syntactic information into the feature set [49], however,
the results were not too convincing. In this work, we will present our re-
sults of incorporating syntactic information into an authorship verification
project.

1.5.6 Grammar checking

Reliable checking people’s writing for correctness is one of the important
goals in natural language processing. Spelling checkers became a common
part of our lives, but checking more complex language phenomena still
presents a challenge. Although there are “grammar checkers” available in
software packages like Microsoft Office or as stand-alone programs, they
can address only a restricted range of grammar error types, and they are
far from being able to find all the errors, wisely following the “minimum
number of false alerts” philosophy.

In the Czech language, punctuation errors and mistakes in subject-pred-
icate agreement belong to the most severe and most frequent errors people
make, as there are complex and non-intuitive rules for both writing punc-
tuation and correct usage of subject-predicate agreement. At the same time,
these rules include numerous syntactic, semantic and pragmatic aspects
which makes them very difficult to be formalized for automatic checking.

11

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

Punctuation detection and fixing errors in the Czech grammar is often
used as a textbook example of how automatic syntactic analysis can be ex-
ploited for a prominent practical application. However, in real life, the full
parsing is rarely used (and if, the results are not convincing [46]), and the
current methods use rather various types of common error patterns or light-
weight modifications of the full syntactic formalisms.

1.5.7 Collocation extraction

Collocation is a group of words that co-occur more often than would be
expected by chance. Sometimes, they may indicate some degree of non-
compositionality and may be used to find idioms [31], in other cases they
just identify a common preference between the words. The most famous
example of this phenomenon is probably “strong tea” vs. “powerful tea”
– the latter is not correct English, although there is no obvious reason; the
word “tea”, unlike e.g. “computer”, just prefers “strong” to “powerful”.

It is very important for language learners to know the common collo-
cations in the language, otherwise their communication may sound funny
and incorrect. Collocations dictionaries were created for language learners
[29, 146], the latter with help of automatic tools. For the same reason, col-
locations are important for natural language processing as well – e.g. in
machine translation, collocations may disambiguate word sense [174] and
help with the fluency of the translation (usually, statistical language models
are used in this phase which can be considered a type of collocation infor-
mation).

Automatic tools for collocation extraction are needed for dictionary cre-
ators as well as language learners, as there are many cases when a collo-
cation dictionary is not available or its coverage is not sufficient. We will
present state of the art methods for extracting collocations from natural lan-
guage texts which make use of syntactic analysis, and our contribution to
the field.

1.5.8 Terminology extraction

Terminology extraction is related to extraction of collocations; it can be con-
sidered a specialized version of collocation extraction. The task consists
in extracting phrases from domain specific, often expert texts, that form
the terminology of that domain or expert field. The automatic tools for
terminology extraction are useful for creating specialized dictionaries, but
mainly for domain specific translation work (both manual and automatic):

12

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

terms should be translated consistently and rarely there are sufficient ter-
minology dictionaries.

We will show our approach to terminology extraction, with exploitation
of automatic syntactic analysis, that has been evaluated and used within
the scope of a commercial project.

1.5.9 Hidden applications

Apart from real world applications, some of which were introduced above,
there are natural language processing tasks that are usually hidden from
users, however, they are necessary for subsequent processing.

One of them is morphology disambiguation – selecting the proper mor-
phological tag from the set of all possible tags for a particular word (e.g. to
decide if “cut” is a verb or a noun). Many of the current applications depend
on this processing, and although syntactic analysis is often considered to be
one of them, it can also contribute to accuracy of the disambiguation [59].

Anaphora resolution, finding meanings (so called antecedents) of the
referential expressions within texts [116], such as personal pronouns or un-
voiced subjects in Czech, is one of the tasks that could raise accuracy of all
natural language processing applications. Referential expressions are used
in all natural languages for economical reasons, however, being able to in-
terpret them correctly is necessary for advanced computer processing of
language. From sentences and sentence groups like

“I love my grandfather and I won’t see him being taken advantage of.”

it would be desirable to extract e.g. a collocation candidate (see, grandfa-
ther), rather than (see, he); or we would like to infer from this sentence that
“grandfather can be taken advantage of”. Syntactic preprocessing is neces-
sary for most of non-trivial anaphora resolution algorithms.

Another such application is automatic extraction of semantic frames
[106] which aims at automatic production of frame semantic resources, such
as FrameNet [5] or Verbalex [44]. These resources are not directly exploita-
ble by common users, however, they are very important in complex natu-
ral language processing needed for advanced natural language reasoning,
question answering or machine translation.

A related task is extraction of lexical semantic information such as con-
tained in WordNet [115]. Again, the resource itself is not of intensive in-
terest among crowds, however, it contains very useful information about

13

1. INTRODUCTION: NATURAL LANGUAGE PROCESSING CHALLENGES

relationships among words, and its automatic extension or even creation
would be very beneficial for advanced natural language processing.

Natural language synthesis is another important field of natural lan-
guage processing. It seems straightforward – e.g. it works on railway sta-
tions for tens of years already. However, not all types of synthesis are that
straightforward, and sometimes a deep analysis of input is needed, includ-
ing syntactic analysis, to put the words in the right forms correctly together.

We have been working with the applications outlined above as well,
within the scope of using syntactic analysis to gain better results. We will
explain the procedures implemented and the initial results.

14

Chapter 2

Automatic syntactic analysis of natural languages

In this chapter, we describe the state of the art in the field of automatic natu-
ral language syntactic analysis. The field and its results are really extensive,
so the description does not aim to be complete; we cover the main trends
and results relevant to our work.

2.1 Preprocessing

When dealing with syntactic analysis, its notation and algorithms, it is not
possible to work with plain text, we need additional annotation on lower
levels.

Namely, the purpose of syntactic analysis is to reveal the structure of a
sentence, and practically all of the parsing algorithms expect a single sen-
tence on their input. So the first necessary step prior to any syntactic analy-
sis is the sentence boundary detection.1

Next, basic unit for revealing the syntactic structure is usually a word,
or a token (word, number or punctuation), sometimes a morpheme.2 To be
able to work with words, we need a tokenizer, a tool that splits plain text
into words.

These two tasks may seem almost trivial (at least for languages that use
spaces to delimit words) but even on this level there are severe problems
that complicate further analysis. E.g. how should “A. Einstein” (no sentence
delimiter) be distinguished from “... chat with person A.” (and a sentence
end)? (The previous sentence itself is a good example of sentence bound-
ary detection complexity.) With regard to the tokenization problem, how
should we tokenize “don’t”? Should be e.g. “in spite of” 3 tokens or one
token? Each of such decisions has non-trivial implications. And it is very

1. Stream syntactic processing is also possible but it introduces complications for most of
the current approaches and it is not frequently used.
2. In further text, we will refer to these basic units simply as words, so “word” can mean
also a number or punctuation. Differentiation between words and non-words is not neces-
sary for this text.

15

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

important (and often problematic in practice) that all phases of the process-
ing use the same assumptions, i.e. if the tokenizer splits “don’t” to “do” and
“n’t”, the morphology and syntactic analysis need to be able to process this
tokenization correctly.

The next layer of processing is morphological analysis, i.e. assigning a
base form (a lemma) to each word, and a morphological tag which codes the
information about part of speech, gender, case etc. The morphological tag
can be ambiguous or disambiguated – in the latter case, the task is referred
to as tagging. The information about morphology is crucial for almost all of
the state of the art parsers.

There are many available morphological analysers and taggers for En-
glish. We were mostly working with the TreeTagger [158], because of a pos-
itive previous experience. For Czech, the two notable taggers are MORČE
[39] based on the positional tagset and Desamb [171] working over the at-
tributive tagset of the Ajka tool [159].

There is a lot of other information potentially useful for syntactic analy-
sis accuracy: namely named entity detection and non-word markup (phone
numbers, time expressions, number-unit pairs) [122], multiword expression
recognition [153] (these tasks partly overlap) or lexical semantic tagging of
different types [173]. Such preprocessing can be used prior to syntactic anal-
ysis, but it is not really usual.

Natural language corpora can be exploited, too. A corpus is a large col-
lection of texts in a particular language, in a format suitable for computer
processing. Usually, it is indexed in a specialized database to enable fast
searching and it contains morphological annotation. For parsing, corpora
may be used for generation of various statistics, and if the corpus contains
syntactic annotation, it is suitable for training statistical parsing models.

In syntactic representations discussed below, we suppose that morpho-
logical data is part of each word of the sentence, as well as its position in
the sentence and other available information. In other words, each word
is not just a plain string, but a complex node containing all the low level
information about that word.

2.2 Encoding syntactic information

To reveal the structure of a sentence means to detect the way how words
are organized – either we describe this organization as relationships among
individual words, or we identify bigger and bigger units that the words
organize into. The two most widespread approaches to notation of the syn-

16

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

Isubject

sawpredicate

adet

manobject

withpp-attached

adet

telescopeprep-object

.

[root]

Figure 2.1: Dependency tree for sentence I saw a man with a telescope.

tactic information are derived from these two points of view – dependency
formalism and phrase structure formalism.

2.2.1 Dependency formalism

Let S = (w1, . . . , wn) be a sequence of words that forms a sentence and L

be a set of arbitrary strings. Dependency syntactic tree is defined as a tuple
(S,L, d, l, root) where

d : {w1, . . . , wn} → {w1, . . . , wn, root}

is the dependency function3 and

l : {w1, . . . , wn} → L

is the labelling function assigning a string from L, usually expressing the
syntactic role of the word in the sentence, to each word (or equivalently,
to each edge in the tree, i.e. each pair (wi, wj) ∈ d). Often, (S, d, root) is
referred to as unlabelled dependency tree, (S,L, d, l, root) is called labelled

3. the notion of dependency tree can be generalized to dependency graph, then d is unre-
stricted binary relation

17

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

dependency tree. The root is a special technical node in the tree used to
cover words that do not depend on any other word, so that the resulting
graph is guaranteed to be connected.

The linguistic interpretation of the structure is that the dependent word,
and the whole respective subtree, adds information to the governing word.
In some languages, the governing word may determine morphological fea-
tures of the dependent word, e.g. in case of gender, number or case agree-
ment. The labelling function provides a classification of this relationship.

An example of a dependency tree is shown in Figure 2.1. Dependency
trees are usually drawn as “ordered” which means that it is possible to re-
cover the sentence word order by reading the tree nodes from left to right.

I saw

a man

with

a telescope

.

<sentence>

<clause>

<NP>

<PP>

<NP>

<NP> <VP>

<DET> <NP>

<P>

<DET> <NP>

<ends>

Figure 2.2: Phrase structure tree for the sentence I saw a man with a tele-
scope.

2.2.2 Phrase structure formalism

Phrase structure formalism, or immediate constituent analysis, organizes
sentence words into phrases, these phrases join to bigger phrases etc., and
the whole sentence is marked as the very top phrase. It can be also viewed
as a labelled bracketing of the sentence. A phrase structure tree for sen-
tence S = (w1, . . . , wn) is defined as tuple (S,N, p, d) where N is a set of

18

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

(arbitrary) nonterminals,

p : w1, . . . , wn → N

is a preterminal function that assigns a nonterminal to each word (as each
word is considered an atomic phrase), and

d : N → N

is a function that assigns an immediate parent phrase to each phrase. We
say that word w belongs to phrase phr if and only if

phr = p(w) ∨ ∃n ∈ N : phr = dn(p(w))

Here we assume that each nonterminal refers to exactly one phrase in the
sentence. If more phrases need to be marked by the same nonterminal, our
definition requires that these two nonterminals are differentiated, e.g. using
integer indexes.

Usually it is required that every phrase (or nonterminal) covers a con-
nected part of the sentence, i.e. if wi, wj , i < j, belong to a phrase phr,
then wi+1, wi+2, . . . , wj−1 also belong to phr. This restriction enables the
phrase structure analysis to be treated as labelled bracketing of the sen-
tence, and allows straightforward use of formal grammar machinery pro-
posed by Noam Chomsky [23], for the analysis.

An example of a phrase structure tree is given in Figure 2.2. If the con-
nectedness assumption mentioned above holds, and the words in the sen-
tence are written in their original order, the edges in the tree defined by the
functions p and d do not cross.

2.2.3 Dependency vs. phrase-structure

The phrase structure formalism formed a base for work of Noam Chomsky
[23], concept of formal grammars and the formal languages theory. Because
of this fact, it is more commonly known in the world and often used as the
first model when working with syntactic information. On the other hand,
the dependency formalism (introduced by Tesnière [169]) has its tradition
in Czech linguistics [163, 41]; the majority of syntactic research on Czech is
exploiting it, and it is often claimed to suit better to the Czech language and
its relatives, mainly due to its capability to record non-projective construc-
tions [175].

19

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

In fact, both of the approaches have their strengths and weaknesses,
even with regard to the Czech language. Both of them can record phrases,
or constituents – in the phrase structure formalism, this information is ex-
plicitly given (by words covered by particular nonterminals), whereas in
the dependency formalism constituents correspond to subtrees in the de-
pendency tree.

Malouattr

mělpredicate

chaloupkuobject .

[root]

Figure 2.3: Illustration of non-projective dependency tree on Czech sentence
“Malou měl chaloupku.” (“Little (he) had cottage.”). The phrase “malou
chaloupku” (“little cottage”) is disconnected and the corresponding depen-
dency edge is non-projective.

As we already mentioned, the dependency formalism can be used for
straightforward annotation of non-projective constituents – where non-pro-
jective means disconnected, with regard to the original sentence word or-
der. An example of non-projective dependency construction is given in Fig-
ure 2.3. If we want to record non-projective constructions using the phrase
structure formalism, we need to define an additional relation over non-
terminals that would join smaller connected parts of a particular phrase,
or allow crossing edges, or change the sentence word order, as illustrated
in Figures 2.4, 2.5 and 2.6.

The importance of non-projectivity for analysis of Czech is debatable.
Zeman [175] reports that about 2% of all dependency edges in a Czech
dependency corpus are non-projective, and about 20% of Czech sentences
contain a non-projective construction, which seems to be significant. On the
other hand, a closer look reveals that many of these non-projective construc-

20

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

Malou měl chaloupku

.

<SENTENCE>

<VP>

<ADJ#32> <V> <NP#32>

<PUN>

Figure 2.4: Marking non-projective constructions using the phrase structure
notation with an additional relation over non-terminals. The same sentence
as in previous example is used – “Malou měl chaloupku.” (“Little (he) had
cottage.”)

Malou

měl

chaloupku

.

<SENTENCE>

<VP>

<ADJ>

<V>

<N>

<PUN>

<NP>

Figure 2.5: Marking non-projective constructions using the phrase structure
notation with crossing edges. The same sentence as in previous examples is
used – “Malou měl chaloupku.” (“Little (he) had cottage.”)

tions are rather technical and they would not be present if the annotation
instructions were formulated in a slightly different way, with no impact on
linguistic expressivity. A detailed discussion of this topic would be interest-
ing but it is not directly related to the main focus of this work, so we will
not go into more detail.

21

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

měl

Malou chaloupku

.

<SENTENCE>

<VP>

<ADJ#0>

<V#1>

<N#2>

<PUN#3>

<NP>

Figure 2.6: Marking non-projective constructions using the phrase structure
notation with changing the word order. The same sentence as in previous
example is used – “Malou měl chaloupku.” (“Little (he) had cottage.”)

Unlike the phrase structure approach, the dependency formalism is not
able to record the difference between “new queen of beauty” and “new
generation of fighters” straightforwardly (see Figures 2.7 and 2.8 for de-
pendency analyses and desirable phrase structure analyses), with possible
implications on the semantic level of analysis: new queen of beauty is defi-
nitely not a new queen, new generation of fighters is not really a generation
of fighters.

The dependency formalism has also problems with phenomena that do
not have binary nature, and cases where parts of a phrase are on the same
level and do not have a clear governing word. Examples are coordinations
like “small and ugly”, multiwords like “instead of” or information such as
phone numbers or addresses. These phenomena can be annotated by se-
lecting one of the words (more or less arbitrarily) as the governing word
and making the other parts depend on it, with a special label saying that
this dependency is “different”. However, it is not natural and it causes real
problems in readability of the trees (see Figure 2.9) and in the parsing pro-
cedure – coordination is often reported to be hard for dependency parsing
(e.g. [142]).

22

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

Newmodifier

queen

ofpp-attached

beautyprep-object

[root]

Newmodifier

generation

ofpp-attached

fightersprep-object

[root]

Figure 2.7: Dependency analyses of phrases “new queen of beauty” and
“new generation of fighters”. The dependency analysis does not differenti-
ate them.

2.2.4 Partial syntactic analysis

The formalisms introduced so far are sometimes referred to as “full” syn-
tactic analysis. A concept opposite to the full analysis is partial, or shallow
syntactic analysis [1]. Partial analysis does not aim to obtain a whole syn-
tactic tree for a given sentence; rather than that, its goal is to annotate only
selected syntactic phenomena, e.g. noun phrases, some (not all) types of
dependencies among the words, or ambiguous syntactic relations.

Within the formal description, this can be achieved by reducing restric-
tions on functions d, l, p introduced above: they can be partial, they can
be relations rather than functions. . . In practice, there are hundreds of ap-

23

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

New

queen

of beauty

<NP>

<NP>

<PP>

<ADJ>

<N>

<P> <N>

New generation of fighters

<NP>

<NP>

<PP>

<ADJ> <N> <P> <N>

Figure 2.8: Phrase structure analyses of phrases “new queen of beauty” and
“new generation of fighters”. The phrase structure analysis is able to cap-
ture the subtle difference between them.

proaches to partial syntactic analysis and the exact format is usually driven
by the projected application.

Simple XML or even plain-text markup, rather than syntactic trees, are
typically used to record the partial syntactic information which makes this
approach very easy to understand and the annotated data much more read-
able than in case of full syntactic trees. As we will discuss later, this is a
great advantage; although the expressivity of the approach is not as high
as in case of full parsing, its transparency makes it much more usable in
practical applications.

2.2.5 Advanced formalisms

Several advanced approaches were introduced that enrich the concepts of
usual dependency and phrase structure syntactic annotation, aimed at even
more precise description of linguistic aspects of syntax. Important represen-
tants of this group include Combinatory Categorial Grammars [166], Head-
Driven Phrase Structure Grammars [140], Tree Adjoining Grammars [67] or
Lexical Functional Syntax [10].

We will not discuss these formalisms in detail here, mainly because their
added value is not immediately relevant to the topic of this work, and only
a few tools exist that work within the scope of these formalisms and have
significant coverage on common language, necessary for practical applica-
tions. Also, as we will discuss in following sections, we consider adding

24

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

velmimodifiertěžkýcoord

aattr

rozměrnýcoord

fragment

[root]

velmi

těžký a rozměrný

fragment<ADJP>

<NP>

<ADJP>

<ADV>

<ADJ> <C> <ADJ>

<N>

Figure 2.9: Dependency and phrase structure analysis of a phrase with co-
ordination – “velmi těžký a rozměrný fragment” (“very heavy and (very)
bulky fragment”). In this case, the phrase structure notation is much more
readable.

more complexity a backward step on the way to broadly usable automatic
syntactic analysis, at least from today’s perspective.

25

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

2.3 State of the art parsing methods

The task for a natural language parser is to produce a linguistically correct
syntactic tree, given the input sentence annotated on lower levels, namely
for morphology. We can distinguish two basic approaches:

• Rule-based where the syntactic tree is constructed by a set of manu-
ally collected rules.
• Statistical where statistical information gained from a syntactically

annotated language corpus, is used for building the syntactic tree.
Such information can be in form of automatically extracted rules, a
language model or weights assigned to various possible constructs.

Of course, combinations of these two basic approaches exist, namely the
rule-based tools often use additional statistical information.

The main advantage of the statistical approach is definitely its language
universality – provided there are annotated data, the same algorithm can
be used for learning rules or models for any language. Also, the statisti-
cal algorithms are more precise when evaluating by tree similarity metrics,
which is current standard in the field. Statistical algorithms can imitate the
annotated data better than human experts.

The main advantage of the rule-based approach is its independence on
annotated data. Building a manually annotated syntactic resource is a long-
term expensive task and such a resource may not be available for some lan-
guages, or domains. Also, statistical parsers are always limited to the exact
shape of the source data annotation – if such annotation is not suitable for
a particular application, the statistical approach cannot be used straightfor-
wardly.

Similarly to many other NLP sub-fields, the statistical approach is sig-
nificantly leading in the last years’ research on parsing, unlike the early
stages of syntactic processing, in terms of accuracy against manually anno-
tated corpora, as well as in overall number of statistical parsers compared to
number of rule-based parsers. However, rule-based solutions are still used
[98, 97, 15] and we are confident that rule-based approach should not be
abandoned, mainly because of its flexibility and independence on the fixed
shape of the annotated data.

There is a lot of natural language parsers in the world and it is not the
aim of this work to explain their principles in detail, so we present only an
outline here. The most important representatives of the statistical parsers
include:

26

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

• Charniak’s maximum-entropy-inspired parser [20], based on a prob-
abilistic generative model
• Charniak & Johnson’s parser [108] using lexicalized n-best proba-

bilistic context-free grammar (PCFG [22]) and discriminative rerank-
ing
• Stanford University parser [75] which is able to provide dependency

structure as well as phrase structure (expressed by PCFG) and each
of them is scored with separate model
• Clark and Curran’s CCG parser [24, 30] combining the Combinatory

Categorial Grammar formalism with log-linear models
• Collins’ statistical parser [27], based on a lexicalized PCFG model
• the MaltParser [128], a data-driven parser-generator for dependency

parsing that supports several parsing algorithms and learning al-
gorithms and allows user-defined feature models, consisting of ar-
bitrary combinations of lexical features, part-of-speech features and
dependency features
• McDonald’s Maximum Spanning Tree dependency parser (further

referred to as MST Parser) [109] that implements a discriminative
learning method exploiting online large-margin training combined
with spanning tree inference algorithms
• Nakagawa’s multilingual dependency parser [123] which combines

Gibbs sampling with Support Vector Machines

The best known parser with a rule base backbone is the RASP (Ro-
bust Accurate Statistical Parsing) system that combines rule-based gram-
mar with a probabilistic parse selection model [12, 13].

For Czech, the notable statistical parsers are

• Holan’s pushdown automata dependency parsers [48] that work on
a base of premise-action rules learned from the annotated corpus
• Holan’s ANALOG dependency parser [48, 47] that searches for the

local tree configuration most similar to the training data
• Zeman’s statistical dependency parser [176] based on dependency

bigram modelling
• Collins’ parser adapted to Czech [28]
• McDonald’s MST parser adapted to Czech [110] and its improved

version obtained by feature engineering on the model [130],
• Nakagawa’s multilingual dependency parser [123] trained on Czech

data for the CoNLL4 Shared Task 2007
• Nivre’s MaltParser adapted for Czech [129, 127]

27

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

The rule based parsers for Czech include:

• Žabokrtský’s rule based dependency parser [48] that implements a
set of reduction rules in the form of Perl subroutines
• Dis/VaDis partial parser [172, 121] using manually created definite

clause grammar in Prolog
• Synt phrase-structure parser [51, 83, 63] that combines manually de-

veloped context-free meta-grammar with contextual actions, an effi-
cient variant of the chart parsing algorithm and a tree-ranking func-
tion partly learned from a corpus of sentences annotated on con-
stituent structure [84]
• SET parser [90] based on a set of pattern-matching linking rules that

is able to produce both phrase-structure and dependency trees; this
parser is described in detail in Chapter 5, as one of the important
contributions of this work

2.4 Treebanks and parsing evaluation

For the purpose of training the statistical parsers and measuring accuracy of
parsing, manually annotated corpora are built, usually containing syntactic
trees for natural language sentences; therefore they are called treebanks.

The best known and most used treebank for English is the Penn Tree-
bank [103] based on the phrase-structure formalism. It contains about 3
millions of syntactically annotated words and it plays the role of a standard
for training and testing of English parsers. For Czech, the biggest and most
used such resource is the Prague Dependency Treebank (PDT) [38] which
uses the dependency formalism and contains about 1.5 million tokens an-
notated on the syntactic layer (called “analytical” within the scope of the
functional generative description theory [160] that is the annotation based
on). Treebanks of similar sizes are available for most of world’s major lan-
guages, using either dependency or phrase-structure notation of syntactic
information.

Treebanks are crucial components in the state of the art parsing evalu-
ation methodology. The evaluation usually takes the raw (morphologically
annotated) sentences from a particular treebank, uses them as input for a
parser and compares output of the parser with manual syntactic annota-
tion within the treebank. In case of statistical parsers, different parts of the
treebank are used for training and evaluation – either the treebank has a
dedicated evaluation part, or n-fold cross-validation is used.

28

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

To compare trees on the output of a parser with the so called “gold stan-
dard” trees present in the treebank, various tree similarity metrics are used.
In case of dependency formalism, the standard precision and recall over the
dependency edges is measured. Precision is defined as number of correctly
identified edges divided by the number of all edges identified by the parser,
and recall is number of correctly identified edges divided by the number of
all edges in the gold standard data. Because we are comparing two trees
and the number of edges is always the same in the parser output and in the
treebank data, precision is always the same as recall:

P = R =
#correct edges

#words in sentence

In further text, we will refer to this metric simply as dependency preci-
sion (in most papers it is called accuracy but we consider this term too am-
biguous for our purposes). Labelled and unlabelled dependency precision
can be distinguished, according to what edges count as correct: in case of
unlabelled precision, only the governor of each word is taken into account,
the labelled precision counts with pairs (governing word, dependency la-
bel).

In case of phrase-structure trees, there is the PARSEVAL measure [36]
which is used at most. It is comprised of precision and recall over all the
identified phrases, rather than edges (in this case, precision and recall are
usually not the same). Again, labelled and unlabelled version of both mea-
sures can be distinguished where the the nonterminal covering the phrase
is considered as label. A more complicated metric called leaf-ancestor as-
sessment was proposed [154, 155] which is reported to provide results that
better correlate with human judgement of the parse quality.

Best results against the testing part of the Penn Treebank were achieved
by self-trained Charniak & Johnson’s parser [108] – slightly over 92 percent
in terms of the PARSEVAL numbers.

Best parser of Czech, according to evaluation against the testing part
of the Prague Dependency Treebank, seems to be the Nakagawa’s mul-
tilingual parser [123] trained on PDT for the CoNLL4 Shared Task 2007,
with 86.3 percent unlabelled and 80.2 percent labelled dependency preci-
sion. MaltParser [127] and MST parser [110] also reported high unlabelled
precision – 85.8 and 84.7 percent respectively. In case of CoNLL4 task, only
a part of the PDT data was used, so it is not clear how the numbers relate
to each other precisely. A more detailed and up-to-date information regard-

29

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

ing evaluations against the PDT can be found on the web of the Institute of
Formal and Applied Linguistics.4

2.5 Criticism of current methods

As we have illustrated, the spectrum of parsers is very rich, even for a lan-
guage with less speakers like Czech there are tens of them. Their precision
is relatively high – 85 to 90 percent means about 2 errors per sentence but
this includes attachment of all words including e.g. punctuation or particles
that most of possible applications would not use at all.

Also, it is a question where a theoretical maximum lies, i.e. the percent-
age of agreement of human annotators familiar with the task. For morpho-
logical tagging of English, 97 percent is reported, although this number
probably comes from a semi-official note [101], and such precision has al-
ready been achieved. For parsing, the inter-annotator agreement (percent-
age of edges/phrases where human annotators agreed with each other) is
almost never reported in case of the prominent treebanks, and it may well
be around 90 percent. One of the few resources where the agreement is re-
ported is [113] and although it is a slightly different task, the figures for
the most important parts of the annotation (“structure” and “functor”, i.e.
the governing word and the syntactic label) indicate that it is even below
90 percent. Sampson and Babarczy [156] provided strong evidence that the
discussed agreement cannot go beyond 95 percent, in terms of the leaf an-
cestor assessment metric, and more precise annotation instructions do not
help to achieve higher figures of agreement. This further supports our hy-
pothesis of about 10 percent people disagreement on the syntactic annota-
tion tasks.

Quite a few questions arise here. Clearly, the field is very well devel-
oped; why does it have so little impact on real-life applications? Why major
commercial IT players like Google or Facebook (or Seznam, kind of Czech
Google) that work with a lot of natural language data and exploit other
NLP tools such as morphology taggers heavily, do not use syntactic tools
on a daily basis? Are the results from parsing useless? If the field is close to
the theoretical maximum that parsing can achieve, is the methodology cor-
rect? Is the task well defined, if the upper bound of inter-annotator agree-
ment lies below 90 percent? And why is the inter-annotator agreement not
consistently published? Do we know what we actually need from natural
language parsing, for practical applications, or does the field exist just for

4. ufal.mff.cuni.cz/czech-parsing

30

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

itself, happy with increasing percentages of accuracy against 20 years old
treebanks?

2.5.1 Low usage

Let us bring more evidence for the lack of parsing usage. We have already
mentioned that Google and other big players rely rather on word-level sta-
tistical methods of analysis.

Even in other advanced NLP tasks such as question answering, and
even within the NLP community, the tendency to use statistical word-level
methods rather than parsing, is clearly visible. A recent attempt for a ques-
tion answering system for Czech does not even mention parsing technolo-
gies [78]. As we have already mentioned, Wikipedia page for information
extraction does not mention parsing or syntax at all.

As Jakubı́ček noticed, the word “parser” is mentioned in 7,232 of 21,066
papers available within the ACL Anthology (2012), but looking for phrases
matching the regular expression

(used |using |employ |employing |exploit |exploiting) a? parser

gets only 133 results [60, pp. 12–13]. The important and awarded papers on
parsing technologies deal usually with improving the accuracy figures on
available annotated data rather than using the parsers in real-world appli-
cations.

All these facts indicate that there is something wrong with the research
on parsing and that the field needs a restart, or a change of direction, for
the results to be usable in practical applications. In the rest of this chapter,
we analyse the particular problems and outline our methodology aimed at
changing this bad state. In the next chapters, we introduce our contribution
within this changed direction.

2.5.2 Application-sparse output

The first and crucial problem is that the information contained in syntactic
trees is too complex and often tangled. The trees are built according to a
complex linguistic theory, and the annotation follows complicated and ex-
tensive guidelines, built on top of the theory. The annotation manual for
the syntactic layer of the Prague Dependency Treebank has more than 300
pages [42], as well as the Penn Treebank annotation guidelines [9].

31

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

je

zavedeno několik

pojmů , a

to

:

[root]

Figure 2.10: A PDT tree for a phrase “je zavedeno několik pojmů, a to:”
(“are introduced several concepts, as follows:”). Because of trying to cap-
ture the subtle relationship between the word “pojmů” (“concepts”) and
the next sentence, expressed by the “as follows” hook, a clear constituent
“několik pojmů” (“several concepts”) does not form a subtree, so it will not
be recognized as a phrase.

For people not educated in linguistic theory, it is thus almost impos-
sible to get familiar with the format of the trees and exploit the informa-
tion within. Even for people dealing with natural language processing on
a daily basis, it is often very hard to decode some constructions – see also
discussion in Section 3.1.5. We have already mentioned the fact that there
is lack of NLP papers on using parsers, compared to papers on parser de-
velopment. However, even among papers that report using the information
from parsing, the majority exploits the syntactic information simply as ad-
ditional input to some machine learning, a black box that can make use of
any additional information [118, 49]. Especially, there is usually no need
to understand the meaning of the inputs for the machine learning, so this
is a strong evidence that even NLP researchers rather do not bother with
understanding parser outputs more in detail.

Another related problem is, the trees contain far bigger amount of in-
formation than a particular application can possibly exploit. Attachment of
punctuation nodes and particles, relationships among various parts of ana-
lytical verb forms, complex relationships of rather big units such as clauses

32

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

or appositions... Any current practical application can hardly get any ben-
efit from these. However, the fact itself that this information is present, is
not only disturbing for readers and users but adds real noise to the data.
See Figure 2.10 for an example of how advanced annotation can skew e.g.
noun phrase information. The complexity of the annotation is trying to ad-
dress advanced issues but this fact complicates straightforward use of the
structures.

Quite often, the formalism itself forces adding an unintuitive link where
it has no clear interpretation, e.g. in case of ellipsis, or coordinations in the
dependency formalism – words that should depend on all members of a
coordination are usually marked as dependencies of the conjunction (see
Figure 2.9 for an example) [142].

On the other hand, some important information is clearly missing in the
syntactic trees. It is not easy to identify what exactly is missing but there
are some hints. From the Prague Dependency Treebank, it is impossible to
extract boundaries of clauses in a reliable way, which is documented by the
fact that a next round of annotation is needed for adding this information
[100]. Miyao et al. [118] report for parsers of English:

The results show that the task accuracy improves when using a double
parser/representation ensemble. Interestingly, the accuracy improvements
are observed even for ensembles of different representations from the same
parser. This indicates that a single parse representation is insufficient for
expressing the true potential of a parser.

It seems that the common tree representation may not be enough for
purposes of real world applications and that the information contained
within the usual syntactic trees and the information needed by various ap-
plications somehow miss each other. Parsing should offer results directly
exploitable in applications, according to the needs of these applications,
rather than trees based on theory, containing a lot of noise (from the ap-
plication point of view) and missing important information.

2.5.3 Application-free evaluation methodology

The second problem is methodology of parser evaluation – the tree simi-
larity metrics against a treebank “gold standard” – which probably causes
that the supposedly best parsers are not the best for the applications. The
problem consists of multiple aspects.

33

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

Šetřete

peníze

,

netelefonujte

,

faxujte

!

[root]

Šetřete

peníze

, netelefonujte

,

faxujte

!

[root]

Šetřete

peníze

,

netelefonujte

,

faxujte

!

[root]

Figure 2.11: Three possible analyses of sentence “Šetřete penı́ze, netele-
fonujte, faxujte!” (“Save money, do not phone, fax!”). PDT gold standard
is first. The second analysis does not reveal the (debatable) coordination
nesting but captures all the important relationships. The third analysis is
really wrong (does not record even the relationship between “save” and
“money”), however, in terms of dependency precision it is better than the
second one, with respect to the gold standard.

34

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

The similarity metrics do not take into account that attachment of dif-
ferent words has different importance, e.g. attachment of a particle would
be probably less serious error than attachment of a subject. The figures do
not tell us if the parser makes rather trivial errors, or if the errors are se-
rious – for illustration, see Figure 2.11. To fix this, we would need to in-
troduce complex weightings which is probably not achievable without the
metric becoming complicated in an unacceptable way, and without end-
less arguments about the weighting among parser developers. In addition,
these metrics would probably need to be different for different applications,
and language dependent.

This problem, in combination with inappropriateness of the tree format
for the applications, can cause that the statistical tools may be misjudged as
winners of the best parser competition. The statistical algorithms are very
powerful in mimicking the training data, and they optimize for the best
score within the tree similarity metrics. As we have illustrated, both the
training data in form of trees and the tree similarity metrics are not what
we want, as they do not tell us anything about usage in any particular ap-
plication. So, the state of the art evaluation is based on a task that has no
real usage – mimicking the trees in the training data – according to not very
expressive optimisation function, and this approach is supposed to be uni-
versal. This naturally helps statistical algorithms (that are, however, great
in case they are used with data that represent a practically oriented task) to
gain bigger score, even if it may be not significant for particular applications
(or even linguistically significant).

Also, when moving around the possible 90 percent agreement among
human annotators, how much of the data are actually random, with ran-
dom, rather than linguistically relevant agreements, some of which statis-
tical algorithms would spot? Unfortunately, it is impossible to answer this
question, as the appropriate numbers were not published (and we doubt
they will ever be). But on pseudo-random data, the statistical algorithms
would be also expected to win, simply by principle. We are convinced that
the victory of the statistical tools in parsing is not that definite as it seems
to be.

Last and probably most important, trees in treebanks describe the sen-
tence structure from the language theory point of view, which is different
from the application point of view. These are two very different things, and
it has been empirically proven that they not correlate well. Already men-
tioned paper by Miyao et al. [118] about extraction of protein-to-protein in-
teractions (PPI) concludes that there is a “strong correlation between parse
accuracy and PPI accuracy”, however, after a closer look, the correlation

35

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

is only about 0.75 which cannot be really marked as strong. More impor-
tantly, regardless the correlation, the paper states that “a 1% absolute im-
provement in parser accuracy corresponds roughly to a 0.25% improve-
ment in PPI extraction accuracy”. If parsing accuracy moves around 85
percent (with theoretical maximum possibly near 90) and the PPI accuracy
around 57, it does not give much hope that a better parser, in terms of ac-
curacy against a treebank, can help with achieving usable results in the PPI
task.

Our research on collocation extraction, further described in Section 6.5,
showed no correlation between accuracy against a treebank and accuracy
of collocation extraction.

Another paper dealing with another task [68] reports even negative cor-
relation: the higher the accuracy of the application, the lower the accuracy
against a treebank. This can be considered an empirical proof that the tree
similarity metrics against gold standard are useless, and rather hostile, for
application-oriented parsing. The state of the art evaluation methodology
has led the parsing research along a wrong way.

2.5.4 Technical aspects

Last problem complicating the usage of parsers in real world applications
does not relate to methodology or theory, but to the very mundane technical
aspect of their usage: They are hard to be put into operation and ran. This
is related to the fact that they are created primarily as research applications
and the majority of their usage is to run and evaluate them against treebank
data.

In a bachelor student project where part of the task consisted in re-
training and replicating the published results of MaltParser and MST parser
on the Prague Dependency Treebank, the student (of computer science)
spent about three full person-weeks with putting into operation, re-training
and optimization of the parsers. In case of MaltParser, she has not been able
to replicate the published results (see the bachelor thesis [77] in Slovak).

Another lovely illustration of technical difficulties in using a parsing
tool is a desperate email we got as the Sketch Engine support members,
asking if we could run an Arabic parser and tagger within the Sketch En-
gine service; citation of part of that e-mail follows:

I downloaded AMIRA into my computer and as I have no knowledge
of perl, I could not figure out how to run it. I asked many linguists in my
lab and no one knew how to run it and after numerous emails back and

36

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

forth to the computer science department, no one is available to do it and
the only computational linguist I knew was away till after Christmas.

We believe that the inability of the whole university department (!) to
run the tool does not relate to being or not being computational linguist
but to the fact that the tools are complicated and it is hard to run them.
We have had lots of more such experience in context of Lexical Comput-
ing work, as the Sketch Engine uses many external tagging and shallow
parsing tools. Even that we are very skilled in running this type of tools, it
often takes person-days to person-weeks to run them. There is also problem
with robustness of the tools: They often fail on long or imperfect sentences,
consume all the memory and make the machine fail and so on.

The developers of parsing applications should think more about their
users and make more accessible applications.

2.5.5 You aren’t gonna need it

To sum up the content of the last pages:

• The output of natural language parsers does not contain directly the
information that the applications need.
• The parsing evaluation methodology leads to bad development di-

rection. Instead of optimizing output for applications, it is optimized
for treebank annotation.
• The parsers are technically hard to use.

In the following paragraphs, we introduce another methodology based
on principles used in the field of software development, that will help us to
deal with these problems.

A few principles that share a common core exist in agile and rapid soft-
ware development [104], not grown up from research work but from every-
day routine in software development. Namely,

• “Worse is better”5 extensively discussed by Richard P. Gabriel [33,
34]
• “Keep it simple stupid” (KISS) principle6 emphasizing the impor-

tance of the simplicity of system design (in general – originally, the
phrase has been associated with aircraft engineer Kelly Johnson and
U.S. Navy)

5. en.wikipedia.org/wiki/Worse_is_better
6. en.wikipedia.org/wiki/KISS_principle

37

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

• “You aren’t gonna need it” (YAGNI) principle7 which discourages
from implementing functionality which is not immediately needed

All these three principles, or approaches to system design, share several
values, mainly prioritizing simplicity in design over all other values – com-
pleteness, correctness and consistency. Usually, the software design follows
priority order that Gabriel calls “The Right Thing”:

• Correctness: incorrect solutions are simply not allowed.
• Consistency: the design must be consistent. Consistency is as impor-

tant as correctness.
• Completeness: all reasonably expected cases must be covered. Sim-

plicity is not allowed to overly reduce completeness.
• Simplicity: If the design fulfills the above three criteria, it should be

also simple. It is more important for the interface to be simple than
the implementation.

In spite of that, the “Worse is Better” approach follows a different order:

• Simplicity: is the most important consideration in design.
• Correctness: the design must be correct. But it is slightly better to be

simple than correct.
• Consistency: The design must not be overly inconsistent. However,

consistency can be sacrificed for simplicity in some cases.
• Completeness: the design must cover as many important situations

as is practical. But this is the bottom priority; completeness can be
sacrificed in favor of any other quality.

The YAGNI principle adds an important note to the development pro-
cess, rather than project design, that new features should be implemented
at the time when they are really needed, not when it is foreseen that they
will be needed. This is given by the (usually underestimated) aspect of the
development work, that the reality often differs from initial projections dra-
matically. Not following this principle can lead to incredible amounts of
wasted work.

Examples of well working systems based on this approach are Unix or
the C programming language. There are also roots and overlaps within phi-
losophy, namely the Occam’s razor stating that from competing hypotheses
(or approaches), the simplest should be selected. There are also many quo-
tations supporting the basic idea, by the biggest personalities in history and

7. en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

38

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

across disciplines, such as Leonardo da Vinci’s ”Simplicity is the ultimate
sophistication”, Mies Van Der Rohe’s ”Less is more”, or Antoine de Saint
Exupéry’s ”It seems that perfection is reached not when there is nothing left
to add, but when there is nothing left to take away”.

How does this philosophy apply to the automatic syntactic analysis re-
search? The field desperately needs to abandon the approach which starts
with a language theory and hopes to reach practical applications subse-
quently. The language theories are currently in position of initial projec-
tions in a software development project, according to the YAGNI princi-
ple; strictly following them and evaluating results against them, quite an
amount of work has been wasted which may be never used practically. We
have already presented empirical observations which indicate that this ap-
proach is not leading to satisfactory results. Also, it should be noted that
syntactic theories are not good empirical theories in the sense of Karl Pop-
per’s criteria [143] – namely, there are no clear conditions that would falsify
such a theory – so, in our opinion, they do not really pose a good theoreti-
cal basis, a fixed point for further practically oriented research, as it might
seem on the first sight. They are just ideas of how it could work in the hu-
man brain, with cannot be really falsified.

Rather than starting with a syntactic theory, usually represented by tree-
banks and research groups around them, we propose starting with particu-
lar applications, as we outlined them in the introduction, and viewing them
as software development tasks. Namely, according to the principles intro-
duced above, we should

• identify the immediate needs of the applications and work on these,
not trying to predict future needs (YAGNI)
• build simple, possibly task-specific parsers in terms of both design

and user interface, rather than try to create parsers that cover all nu-
ances of natural language and produce all-encompassing trees (pre-
ferring simplicity to completeness)
• adapt the methodology of the parser evaluation to the application’s

need, not the language theory represented by the treebanks, to be
able to track real progress

Besides other implications, this means:

• Tree representations should be adjusted to better reflect the needs
of the particular applications. This contrasts with the current most
frequent pattern of using parsers, where the output is usually taken
“as it is”.

39

2. AUTOMATIC SYNTACTIC ANALYSIS OF NATURAL LANGUAGES

• Research should rather aim at rule-based parsing methods first, to
find out what type of information is actually needed by particular
applications (and only after finding it, eventually start annotation
of data and employ statistical algorithms, to improve the analysis –
statistic algorithms are good only if we know exactly how the result
should look like).
• Research should strongly prefer extrinsic evaluation of the parsing

tools (i.e. evaluating the applications that exploit the syntactic infor-
mation), to evaluating accuracy against a treebank.

Although widely accepted (though often not followed) within the soft-
ware development community, the “worse is better” approach is not very
popular in the research area. We regularly meet reactions like “preferring
simplicity to X is a great misunderstanding” or “with your approach, you
cannot do X”. Mostly they are right from their theoretical point of view,
but these voices do not understand the core message of the approach. It
is unavoidable that there are problematic aspects in a system built accord-
ing to the “worse is better” approach and rapid application development.
However, the enforced design simplicity significantly helps usability, as can
be seen in many other examples from information technology (hypertext,
JSON,8 Python, ...). And usability is the key feature that we expect from
software tools, including NLP tools and especially parsers.

As we illustrate in the next sections, this approach works, and tools
based on its ideas are used in many follow-up applications.

8. www.json.org

40

Chapter 3

Bushbank

This chapter starts with more criticism of treebanks, as the most common
representatives of syntactically annotated language resources. Then, we in-
troduce a new format of syntactic annotation, bushbank (in contrast to tree-
bank) that overcomes most of the described problems and is coherent with
the “worse is better” principle described in the previous chapter. We also
mention pioneer corpora annotated in this format. Content of this chapter
describes a joint work with Marek Grác with author’s contribution of ca. 50
percent. The bushbank idea was firstly outlined in [35], but it was signifi-
cantly developed since then.

3.1 More criticism of treebanks

Apart from the above mentioned methodological problems related to pars-
ing evaluation, treebanks as main representatives of syntactically annotated
corpora suffer from other, clearly visible disadvantages.

3.1.1 Price

Treebank annotation always has to agree with some, usually complex, lan-
guage theory and the annotation process needs human annotators deeply
educated in this theory. Besides, the annotators need to be able to decide
borderline cases (usually, there are many) and real corpus instances not
covered by the core theory, consistently. This results in annotation manuals
with hundreds of pages [9, 42] and the annotators are asked to follow these
instructions precisely (which, in case of several hundreds of pages, may not
be even reachable). This makes treebank annotators rather outstanding (not
everyone is able and willing to finish linguistic education) and very expen-
sive yet before they start the annotation work.

What is also expensive is the annotation process itself: Building a correct
syntactic tree from words in a sentence is an abstract task and the need for

41

3. BUSHBANK

applying extensive manuals and complex language theory causes it takes
3–10 minutes per sentence [113].

We should strive for cheaper methods of syntactic annotation which
would allow creating new resources.

3.1.2 Age and domain specificity

Since annotation is expensive, treebanks are very rare; creation of new ones
is too costly and therefore only the old existing ones are still used. The texts
in the Penn Treebank are already more than 20 years old and the character
of English has changed massively in the meantime. 20 years ago, there was
no Google (and no verb “to google”), no Facebook, most of the published
texts were carefully edited. . . It is probably correct assumption that a parser
trained on Penn Treebank will have problems when analysing up-to-date
Facebook posts.

There is a similar problem with domain specificity – texts in treebanks
mainly consist of journal papers which is a common domain, however, it
has its specific features that are not general. Assumptions induced by train-
ing and testing a parser on such a data set may become invalid when the
parser is used for analysis of other text types, e.g. specialized texts from
domains like chemistry, medical records, the above mentioned Facebook or
Twitter posts or SMS messages [19].

These problems relate to the price of syntactically annotated resources –
if we found a faster and cheaper annotation schema, we would be able to
produce annotated resources for various domains.

3.1.3 One tree per sentence

Syntax is a language level that comes with massive ambiguity. Sometimes,
this ambiguity can be resolved by wider context, e.g. in case of the famous
sentence “I saw a man with a telescope”. However, sometimes the ambi-
guity resolution is not only hard, even with context and for human beings,
but even not important at all in the process of understanding the sentence.
In sentences like “A plane crashed into the field behind the forest”, it is not
at all important if it was the field behind the forest, or if the crashing took
place behind the forest. In any format of a syntactic tree, however, this needs
to be resolved and no ambiguity is allowed, although both of the syntactic
interpretations are valid. In other cases, the difference between the two in-
terpretations may be important but intentional and not resolvable by the
context – but only one of them must be selected for the annotation.

42

3. BUSHBANK

As Sampson reports [156]:

... not only is genuine structural ambiguity quite common in English, but
(more surprisingly) there is often no reason to resolve ambiguities because
in practice either interpretation amounts to the same thing.

This goes strongly against the “one tree per sentence” principle. We
should aim at recording genuine ambiguity in syntactically annotated re-
sources.

3.1.4 Senseless annotations

Similar problem, enforced by the formalism, is annotation of each node in
the sentence, including rather technical non-words like punctuation, bullets
and numbering of ordered lists, structure of addresses, phone numbers or
tables. These phenomena should not be marked for natural language syn-
tactic structure, as the connection to natural language is very weak and the
syntactic tree does not bring any new information. However, the formalism
enforces attachment and recording the inner structure of such nodes which
leads to entirely artificial annotations with practically no linguistic inter-
pretation [42, pp. 259–262, 267–270, 274–275], that are defined only by rules
in the annotation manual rather than by language understanding. Such an-
notations are confusing when using the annotated data and misleading by
training and evaluation of natural language parsers. Sometimes, the evalu-
ations do not take attachment of punctuation into account [14] which over-
comes the most visible part of the problem, however, this is not sufficient.

For example, in the Prague Dependency Treebank, we can find annota-
tions as in Figures 3.1 and 3.2 (both of them come from the beginning of the
train-1 part of the treebank). In our opinion, such constructions should
not be annotated for natural language syntactic structure at all.

3.1.5 Inconsistent and counterintuitive annotations

Very large number of borderline cases in the annotation theory and too ex-
tensive manuals that, nevertheless, fail to cover all cases, lead to errors and
inconsistencies in the annotations. Because the process of annotation is ex-
pensive, it is not easy to process each sentence multiple times, which would
minimize random errors.

However, the random errors are not the only problem: In many cases,
the rules from the annotation manual themselves lead to problematic an-

43

3. BUSHBANK

,AuxX

telAtr

.AuxG

:AuxG(AuxG

0649Atr

)AuxG64Atr

13Atr

,AuxX

FAXAtr

:AuxG(AuxG

0649Atr

)AuxG64Atr

11Atr

Figure 3.1: PDT annotation of text fragment “, tel.: (0649) 64 13, FAX: (0649)
64 11”.

ČSNSb

46Atr

3130Atr

-AuxG

75Atr

aCoord

jejíAtr

změnySb

7Atr

/AuxG

1983Atr

,AuxX1Atr

/AuxG

1984Atr

,Coord

8Atr

/AuxG

1989Atr

Figure 3.2: PDT annotation of text fragment “ČSN 46 3130-75 a jejı́ změny
7/1983, 1/1984, 8/1989” (“ČSN 46 3130-75 and its modifications 7/1983,
1/1984, 8/1989”)

44

3. BUSHBANK

Většinu
Obj

těchto
Atr

přístrojů
Atr

lzePred

takéAuxZ

používat
Sb

nejenAuxY

jako
AuxY

fax
Atv

,
AuxX

aleCoord

současně
ExD

i jakoAuxC

výkonnou
Atr

kopírku
ExD
,

Figure 3.3: PDT annotation of sentence fragment “Většinu těchto přı́strojů
lze také použı́vat nejen jako fax, ale současně i jako výkonnou kopı́rku”
(“Most of these devices can be used not only as fax but in the same time also
as an effective copier”). Because of complex annotation instructions, the
relationship “použı́vat← jako fax” (“used← as fax”) cannot be recognized
in the tree, as well as the relationship “jako fax↔ jako kopı́rku” (“as fax↔
as copier”).

notations. In that case, annotations are formally correct (they do fulfill the
annotation manual) but for people who are not precisely informed about
the annotation rules, they seem just random and do not make sense at all.

We have analysed a part of Prague Dependency Treebank for such defi-
ciencies and reported the results in [85]. In the paper, we have presented all
the problems as errors in the annotation; later we found out that many of
them are actually correct annotations according to the manual and the back-
ground language theory – they are just absolutely counterintuitive and not
usable in any possible language technology application. The same would
hold for outputs of statistical parsers trained on such data.

Examples of such annotations are given in Figures 3.3 and 3.4. In the
annotation process, such problems should be avoided as much as possible,
and the annotation result should be intuitive and transparent.

To sum up: Building of treebanks is expensive; therefore there are at
most few of them for each language, and building new ones (e.g. special-
ized or domain-specific) is almost an impossible task, due to limited finan-
cial as well as human resources. Annotations contained in treebanks are

45

3. BUSHBANK

AtrAuxX

pokudAuxC

jeAuxV

nakupovánAdv

vAuxP

rolíchAdv

jePred

pakAdvuváděnPnomvAuxP

prospektech
Adv

,

Figure 3.4: Frequent inconsistency among annotation of passive participles
in PDT, illustrated on fragments “, pokud je nakupován v rolı́ch” (“if (it)
is bought in reels”) and “je pak uváděn v prospektech” (“is then reported
in brochures”). In the first case, the passive participle “nakupován” is the
governing word, in the second case the governor is the auxiliary verb “je”
(“is”). Sometimes this difference is correct according to the annotation man-
ual, based on subtle semantic features of the particular verbs. However,
such distinction is non-intuitive and changes the overall shape of the tree.

46

3. BUSHBANK

problematic as they do not allow ambiguity, and extensive manuals often
skew the annotation into a non-readable and counterintuitive noise.

3.2 Syntactic bush

In this section we introduce a new format of the syntactic annotation that
minimizes the problems described above and enables cheap, intuitive and
ambiguous annotation on the syntactic level. We start with a formal de-
scription of a syntactic bush which is an analogy of syntactic tree (compare
to description of dependency and phrasal trees in Section 2.2). Then we ex-
plain its semantics, introduce our particular annotation schema and discuss
various aspects of the annotation.

3.2.1 Formal description

Let S = (w1, . . . , wn) be a sequence of words that forms a sentence. We de-
fine a phrase as a subsequence of the sentence:

(wi1 , wi2 , . . . , wim)

where ij < ij+1 for all j. (Note that this definition allows disconnected
phrases.)

Let type be an arbitrary string (e.g. “NP”) from a set T . We define la-
belled phrase as pair (p, t) where p is a phrase and t is a type. We further
define a weighting function w that assigns a number in interval [0, 1] to each
labelled phrase.

We further define dependency as any pair of labelled phrases (lp1, lp2)

and a dependency weighting function dw that assigns a number in interval
[0,min(w(lp1), w(lp2))] to each dependency. (Note that this enforces that if
w(lp) is 0, both dw(x, lp) and dw(lp, x) are 0, for any other labelled phrase
x.)

Further, let P be set of all labelled phrases that are assigned a positive
weight by the function w. For each labelled phrase lp, we require that

∑

x∈P
dw(lp, x) ≤ w(lp)

Let D be set of all dependencies that are assigned a positive weight by
the function dw. Clearly, D is a binary relation over P . We do not impose

47

3. BUSHBANK

any further restrictions on this relation. Then, the syntactic bush for the
sentence S is defined as tuple (S, T, P,D,w, dw).

3.2.2 Linguistic interpretation

It is probably clear from the definition above that the syntactic information
encoded in bush consists of two layers: The first one is represented by la-
belled phrases or chunks (set P), the second one describes the relationships
among the phrases (relation D). The relationships in our conception bear
roughly the same linguistic information as dependencies in dependency
trees (therefore, we also call it dependencies), however, unlike the tree de-
pendency relation, D connects phrases, not words, and it does not have to
be a function.

Another crucial feature of this approach to syntactic annotation is its
fuzziness provided by functions w and dw: Each phrase, and each depen-
dency, is assigned a probability of being correct which enables two attach-
ment options e.g. for the phrase “behind the forest” in the sentence “A
plane crashed into the field behind the forest” mentioned above.

3.2.3 Implementation

Of course, the content and value of the annotation depends not only on the
used formalism but also on its practical implementation. For example, if we
decided that every word is a phrase, values of the dependency weighting
function are always 1 or 0, and each word must have exactly one depen-
dency with weight 1, we will end up with an equivalent of pure depen-
dency trees. (One of the important practical differences between bushbank
and dependency formalism is that in bushbank, some tokens in the sentence
may not be part of any phrase.)

We have carefully considered the drawbacks of the treebanks described
above and proposed an annotation format that overcomes most of them.
Above, we identified the key problems in treebank style annotation:

• it is expensive
• it requires extensive annotation manuals
• the underlying formalism is too restrictive (does not allow ambigu-

ity)

We have already defined a formalism with greater descriptive power
than dependency or constituent syntax, which solves the third point (and
helps with the second). The particular annotation schema, annotation rules

48

3. BUSHBANK

and annotation process, including specialized software, should minimize
the other two. We have developed annotation schema and annotation pro-
cess on the Czech language but we performed a case study in English too,
and are confident it generalizes well.

3.2.4 Annotation schema

As phrases (set P), we selected noun, prepositional, adjective and adverbial
phrases, verb phrases, coordinations (with certain restrictions, see below)
and clauses. Using labels (set T), we divide these phrases into 4 groups, as
follows.

The first group consists of noun, prepositional, adjective and adverbial
phrases. We define these phrases as maximal, i.e. only the biggest valid
phrase should be annotated, except for PP-attachment – we split phrases
on prepositions because we do not want to record PP-attachment and the
related massive ambiguity at this level. We have labelled all of these as
“PHRASE” (but the morphological information of the phrase syntactic head
is stored as well, so we can consider the whole morphological tag as the la-
bel).1

Such definition has one advantage and one disadvantage. The advan-
tage is, the notion of “PHRASE” is very intuitive and it takes 5–10 minutes
and 2–3 paragraphs of text to explain what it is, and to cover borderline
cases. The disadvantage is, we do not keep the information about the syn-
tactic structure within the phrase. We decided it is a good trade-off – the
phrase is usually short and its inner structure is easy to analyze automat-
ically (e.g. [94] reports that parsing of short segments is easy). Also, this
decision makes the annotation process faster (and therefore cheaper) and
the resulting annotation more understandable.

The next type of phrase is verb phrase (label “VP”) – this phrase type
does not mark the maximal verb phrase including all noun phrase argu-
ments and adjuncts, but all parts of the analytical verb form, including
modal verbs and particles in case of phrasal verbs. Verb phrases are often
disconnected in both Czech and English.

For practical reasons, we have introduced two other types of phrase:
“COORD” for marking coordinations (“PHRASE” can contain coordina-
tions but coordination of two “PHRASE”s is not a new “PHRASE”, as their
nesting is prohibited) and “CLAUSE” for marking clauses. (Let us point
out that it is a problem to extract clause information from the Prague De-

1. In the linked materials, cited papers and annotation manual, these phrases are marked
as “NP”, to make the notion more intuitive for linguistically uneducated annotators.

49

3. BUSHBANK

[I] [saw] [a man] [with a telescope]
[I saw] [a man with] [a telescope]

9/10 9/10

4/10
5/10

1/10 1/10

9/10 9/10 9/10 9/10

1/10 1/10 1/10

Figure 3.5: A model bush for the sentence “I saw a man with a telescope”.
The sentence was annotated by 10 annotators, 9 of which agreed on correct
segmentation and the unambiguous dependencies. The attachment of the
phrase “with a telescope” can be recognized as ambiguous, thanks to the
lower weights of both of its possible dependency edges.

pendency Treebank annotation, as illustrated by [100], so this is another
advantage of our approach compared to the pure dependency formalism).

Dependencies (set D) among these phrases are then defined naturally:
If a phrase A modifies another phrase B, then A depends on B. According
to our experience with the annotators, there is a minimum number of an-
notation rules needed, and this level of annotation works very intuitively,
mainly thanks to the specification of phrases described above.

The weighting functions w and dw are determined by percentage of
inter-annotator agreement. If all the annotators of one sentence agreed on
a phrase or a dependency, the weight of such phrase (dependency) is 1. If
only half of them agrees, the weight is 0.5. An illustration of the annotation
structure is given in Figure 3.5.

The whole annotation manual for Czech consists of five A4 pages (1300
words) including examples that form about 70 percent of the text, and it
is attached to this work in Appendix A. In combination with the intuitive
specification of the task, this made annotator training very fast and cheap,
one hour task.

3.2.5 Annotation process

If the annotators would have to select phrases in text manually and then
link them together, which is a common practice in annotation projects, it
would be tedious and time-consuming work. Because of budget, need for

50

3. BUSHBANK

Figure 3.6: The interface of the pHrase annotator tool.

annotation speed and also because we wanted to limit creativity of the an-
notators to increase consistency, we decided to process the input text by
automatic parsers and only let the annotators decide if the offered phrase
is correct, or incorrect. Annotators were not allowed to mark phrases that
were correct but were not found by automatic means.

When annotating dependencies, annotators were offered only phrases
marked as correct, in a select menu (typically there were up to 10 phrases
in a sentence, up to 5 within a clause) and the task was to assign a correct
dependency to each phrase. If a covering clause was correctly identified,
annotators could choose only from phrases within that clause.

We have developed a specialized GUI tool for annotators, the pHrase
annotator. Within the tool, annotators can see the full sentence, together
with automatically extracted phrases. Each phrase is given three radio but-
tons for “correct”, “incorrect” and “don’t know”. If the mouse pointer hov-
ers over the phrase candidate, the phrase gets highlighted in the sentence.
Using the tool is illustrated in Figure 3.6.

3.2.6 Methodological aspects

Using automatic pre-processing and especially omitting the possibility of
identifying correct phrase in case it was not found automatically, has sig-
nificant implications. Mainly, such a resource will never be complete, i.e.
we will never be able to cover all the correct phrases; there will always be
some percentage unnoticed by the automatic tools. This poses a problem

51

3. BUSHBANK

with using such resource for evaluation of parsing precision – if we do not
find a particular phrase on parser’s output in the annotated data, and it
does not overlap with an existing correct phrase, we cannot claim such a
phrase is either good or bad. This implies that we cannot compute a precise
number in case of both precision and recall, but just set the lower and upper
bound for them, as suggested in [37, 4.5].

In practice, however, this problem is not so painful because a combina-
tion of automatic parsers is able to identify vast majority of correct phrases,
over 90 percent according to our tests. The number of undecided cases is
thus rather low and the span of precision and recall is small. Also, it is pos-
sible to complete the annotation, either by annotation of unknown phrases
at the output of a particular parser under evaluation only, or by identify-
ing all nouns (prepositions, adjectives, VP parts, etc.) that are not part of
any phrase, and annotating those manually (or alternatively, offering the
annotators all possible options). However, we did not perform this step, as
it would make the annotation process more expensive (though still many
times cheaper than creating a treebank) and we do not consider the problem
of incompleteness as crucial for ongoing research.

Also, in case of using the data for parser evaluation, such resource may
be accused of favouring the parsers that were used for its creation. There is
not only the above discussed problem of missing phrases – the fact that
the input is pre-annotated automatically may divert annotators to mark
phrases as correct that are actually not correct according to manual, or that
lie in the grey zone but may have been judged otherwise if there would be
another or no preprocessing. Our answers to this objection are as follows:

• Automatic preprocessing is vastly used in creating manually anno-
tated NLP resources; it has been used in Prague Dependency Tree-
bank annotation [40] and it is generally reported as a positive de-
cision (e.g. [162]) that makes the annotation process faster without
significant disadvantages.

• Most if not all projects used only one preprocessing tool whereas we
decided to use more, to make the resource as complete as possible
and to avoid bias from automatic preprocessing as much as possible.

• Even if there was a significant bias, the fact itself that an automatic
tool agreed with majority (or all) of human annotators (we expect
to have more annotations of each sentence and use only the salient
ones) is already enough evidence that the particular phrase should
be marked as correct. If the annotation manual says otherwise, it is

52

3. BUSHBANK

rather a question if the manual is created in a right way (of course it
might, especially if the particular rule is enforced by needs of an ap-
plication, but the human-machine agreement is strongly significant
anyway).

• Using preprocessing and limiting annotator’s freedom increases the
consistency of the annotation because the automatic parser is usu-
ally right (at least in the simple cases), whereas human annotators
often dive into full linguistic complexity of language phenomena,
even the trivial ones, and as a result they differ in the annotations
where they should not. Our aim was not to perform deep linguistic
analysis but rather create a viable resource in a cheap way and there-
fore consistency gets higher priority than linguistic correctness and
completeness.

To sum up this section: We admit the problem with incompleteness of
the resource. However, there are solutions to overcome it, and it brings im-
portant advantages, mainly speed and price of the annotation process. We
do not accept the objection that our procedure causes bias to the resulting
annotation.

3.2.7 Technical details

As the annotation schema proposed above is relatively complex, we used
the NITE NXT toolkit [18] written in Java (and originally dedicated to mul-
timodal corpora) which allows easy annotation on multiple layers, using
an XML format. We have distinguished word layer, morphological layer,
phrase layer and dependency layer. A specialized library, libBushBank was
created by Marek Grác for convenient work with the bushbank data [37,
4.4.2]. Among other functions, the library offers different options of export-
ing and simplifying the data according to various criteria (e.g., export only
the annotations where all annotators agreed) or converting such simplified
data into a more readable format, such as the vertical text format.2

The pHrase annotator tool introduced above was also written in Java
so that all the annotators could use the same binary package on their local
machines, independently on platform.

2. www.sketchengine.co.uk/documentation/wiki/SkE/PrepareText

53

3. BUSHBANK

3.3 Case studies – Czech and English bushbank

We have created several initial resources according to the methodology de-
scribed above. We have started with adding syntactic annotation to the
DESAM corpus [137] that already contains manually disambiguated mor-
phological tagging. The first 10,000 sentences were annotated 3–10 times
each. During this phase of annotation, we tuned the annotation manual; we
measured its quality by inter-annotator agreement (IAA) and achieved a
shift from “moderate/substantial” (87% average pairwise agreement; 0.65
in terms of Cohen kappa [26, 17]) to “excellent” (92% average pairwise
agreement and Cohen kappa 0.80), according to kappa interpretations by
Landis and Koch [96] and Fleiss [32]. Although the manual is very brief,
these results indicate that our method can achieve highly reliable data.

The speed of the annotation stabilized on 100 sentences per hour, for one
annotator. With average sentence length 20–25 words, such speed enables
us to annotate a one million word corpus in about 11 person-weeks (with
one annotation per sentence) which is about 10 times faster than in case of
Prague Dependency Treebank [113], not counting the setup time before the
annotation starts.

After setting up the manual, we have used the methodology for anno-
tating a small (2400 sentences) highly specialized corpus of cooking recipes,
for the purpose of a proof-of-concept project on text entailment in Czech
[126]. The corpus has proven suitable for the application which has been
another evidence that our approach to syntactic annotation is meaningful.

As there are copyright issues with texts in the DESAM corpus that do
not allow to share it publicly, and also because the texts and the language
within this corpus are rather outdated, we decided to create a new reference
corpus for bushbank syntactic annotation from internet blogs. At the cur-
rent time, the annotation is in the middle, with target size 1 million tokens.
We have agreed with the authors of the texts that the corpus will be avail-
able to public under one of the free licences. Although the annotation is not
yet finished, the corpus has already been used for training of a new pre-
cise chunker for Czech [144]. The morphological annotation of this corpus
is only automatic, obtained by the Desamb tagger [171].

Annotation of Czech corpora used the following parsers for preprocess-
ing:

• the SET parser [90], also described in Chapter 5, with 4 different
grammar modifications, including specialized grammar for detec-

54

3. BUSHBANK

tion of verb phrases, a result of bachelor thesis [8], further referred
to as SET – VP.

• the Collins’ parser adapted for Czech and distributed with Prague
Dependency Treebank [28], together with an algorithm for convert-
ing dependency trees to the bushbank format

• MST parser [110] and MaltParser [127], both trained on Prague De-
pendency Treebank and combined with an algorithm for converting
dependency trees to the bushbank format

We have also started creating an English bushbank. We have adjusted
the annotation manual, so that it follows the same principles as the Czech
one, however, they differ in particular details, naturally. The preliminary
English manual is attached to this work in Appendix B. Up to now, we
have annotated an English bushbank of 700 sentences, by 2–3 annotators
each. TreeTagger [158] was used for morphological analysis and both Tree-
Tagger and an English grammar of the SET parser ([90], see also Section 5.4)
were used for preprocessing the syntactic layer. The annotators were Czech
students of English from the Faculty of Arts at Masaryk University, rather
than native speakers of English, which we consider the biggest problem
with this annotation and we are currently trying to intensify our collabora-
tion with native English annotators.

3.4 Usages

Up to now, apart from the above mentioned entailment project, the Czech
bushbanks were used for evaluating parser’s ability to detect text chunks
(PHRASEs and VPs, as described in Section 3.2.4). The results against the
testing section of the blog bushbank are shown in Table 3.1 (they were al-
ready partly published in [144]). The parsers involved in this evaluation
were the ones listed above, that were used by creation of the Czech bush-
banks. Phrases where the inter-annotator agreement was over 50% were
used as the gold standard.

Also, the blog bushbank was used for training a new statistical chunker
for Czech, based on the Polish IOBBER [145]. Its results, included in Table
3.1, show that in case of PHRASEs, the statistical chunker outperformed the
tools that were used for creating the resource. In case of VPs (that are often
disconnected in Czech), a specialized grammar for the SET parser was the
best.

55

3. BUSHBANK

VPs

Parser Precision (%) Recall (%) F-score (%)
SET 80.2 85.0 82.5
SET – VP 89.4 95.5 92.4
MaltParser 50.7 52.3 51.5
MST Parser 50.9 53.0 51.9
IOBBER 81.6 90.7 85.9

PHRASEs

Parser Precision (%) Recall (%) F-score (%)
SET 74.7 89.5 81.4
Collins 73.2 72.8 73.0
MaltParser 44.3 56.3 49.6
MST Parser 44.1 56.8 49.7
IOBBER 85.9 90.3 88.1

Table 3.1: Results of parser evaluation against Czech bushbank data.

Two remarkable conclusions can be drawn from these results. First, if
an appropriate statistical machinery (in our case the IOBBER chunker) is
trained on the right data, it will produce very good result, independently
on annotation guidelines. If a statistical tool is trained on data with different
annotation style (in our case Collins, MaltParser and MST Parser, all trained
on PDT), they will perform significantly worse. In this case, all these three
were outperformed by the rule-based parser SET, and a negative correlation
can be observed (-0.83) with the dependency precision on PDT, as shown in
Table 3.2.

Second, if a specialized rule-based tool is tailored to a particular task,
it can outperform the statistical approach. In our case, the specialized VP
grammar of the SET parser was better than the statistical IOBBER, probably
because of the disconnected nature of Czech verb phrases. Both of these
conclusions are consistent with our arguments in Section 2.5.

The speed of the annotation together with the accuracy of the IOBBER
training algorithm makes it possible to create domain-specific statistical
chunkers, using new domain-specific bushbanks, with a reasonable amount
of financial resources, which was not possible before. This may be one of the
possible future research directions.

56

3. BUSHBANK

Parser PDT dependency precision (%) PHRASE F-score (%)
IOBBER N/A 90.3
SET 56.0 81.4
Collins 80.9 73.0
MST Parser 84.7 49.7
MaltParser 85.8 49.6

Table 3.2: PDT dependency precision vs. bushbank F-score on PHRASEs.

3.5 Conclusions

In this section, we have introduced the bushbank concept of syntactic anno-
tation together with particular case studies, that aimed to overcome some
of the problems of treebanks that are currently leading syntactic resources.
We have shown that

• creating a bushbank resource is faster and cheaper than creating a
treebank
• it can be used for training chunkers and parsers as well as their eval-

uation, so it is a viable alternative to treebanks
• it allows annotating ambiguous and indefinite phenomena in a very

natural way, using multiple annotators and their agreement
• the annotation manual can be very short while gaining high inter-

annotator agreement
• thanks to this, the resulting annotation is much more intuitive and

understandable for people not specialized in any particular linguis-
tic theory
• the annotation result is much more transparent compared to the tree-

banks and does not contain senseless annotations forced by the for-
malism
• thanks to the automatic preprocessing and strong annotator restric-

tions, the consistency of the resource is well guaranteed

We have also discussed some possible disadvantages of the approach,
namely

• the resulting resource is not complete
• the annotation is less fine-grained than in case of treebanks

57

3. BUSHBANK

We have shown that the first issue is not a problem in many cases, and
it would be easy to overcome; and we consider the second point rather an
advantage that helps readability and usability of the resource.

We have also presented initial parser evaluations based on the Czech
bushbank indicating that the evaluation results depend heavily on the gold
standard data annotation style; namely, accuracy figures for PDT and Czech
bushbank were dramatically different.

58

Chapter 4

Sketch grammar: A shallow approach to syntax

In this chapter, we introduce the concept of sketch grammars which rep-
resents an application driven approach to the syntactic analysis, accord-
ing to the “worse is better” principle introduced in Section 2.5.5. The idea
was originally proposed by Kilgarriff, Rychlý et al. [73] for extraction of
two word collocations within named grammatical relations, called a word
sketch. The concept has proved to be very popular and commercially suc-
cessful within the Sketch Engine system and since its introduction, it has
been enhanced and adapted for a larger spectrum of tasks – namely finding
collocations of more than two words, term extraction and bilingual colloca-
tion extraction. The author of this thesis was substantially involved in the
design and development of these extensions, all of which were already in-
troduced on international forums and have their commercial users within
the Sketch Engine system. Also, an extensive quality evaluation of word
sketches has been done, with author’s significant contribution. The evalua-
tion and its results are described later in Section 6.5.

We firstly describe the word sketch functionality and the formalism that
it is based on; this part has been mostly in place before we started our
work on it, so it is rather introductory and does not present original con-
tribution of this work. Then we describe the particular extensions of the
functionality that we were substantially involved in – this second part does
present an original contribution of this work, and describes author’s joint
work with Adam Kilgarriff, Pavel Rychlý, Miloš Jakubı́ček, Vı́t Baisa and
Vı́t Suchomel, with author’s contribution of ca. 50 percent.

4.1 Basic formalism

Word sketch application was designed to provide users with a one-page,
automatic corpus-based summary of a word’s grammatical and colloca-
tional behaviour [73]. An example of a word sketch user interface is pre-

59

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

Figure 4.1: A word sketch for word “water”. The most salient collocations
of the word are displayed sorted into grammatical relations.

sented in Figure 4.1 and we can see that it is a model instance of a colloca-
tion extraction application, as discussed in the introduction.

Its crucial feature is that the extracted information comes from a natural
language corpus. Therefore, it is closely related to the features of a corpus
manager program, in this case the Sketch Engine which includes Mana-
tee and Bonito [147] as components, and its implementation of the corpus
query language CQL [66].

The basic idea of the approach is to combine statistical measures for
finding collocations with rule-based linguistically motivated filtering of col-
locations and their classification into grammatical relations. There is a num-
ber of purely statistical tests for finding collocations such as the T-test, mu-
tual information, Dice coefficient [102] or even raw frequency, all of which
have their strengths and weaknesses and can be also used within the Sketch
Engine system. The word sketch application itself uses logDice, a modified
Dice score proposed by Rychlý for better interpretability [148].

4.1.1 Query language grammar

The novelty of the word sketch approach consists in combining the statis-
tics with a type of manually defined syntactic rules that limit what counts
as a co-occurrence of particular two words – a sketch grammar. The core

60

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

=subject

2:[tag="N.*"] [tag="RB.?"]{0,3} [lemma="be"]?
[tag="RB.?"]{0,2} 1:["V.[ˆN]?"]

1:[tag="V.N"] [tag="RB.?"]{0,2} [word="by"]
[tag="N.*"]{0,2} 2:[tag="N.*"] [tag!="N.*"]

=modifier

2:[tag="(JJ|N).*"] [tag="JJ.?"|tag="RB.?"]{0,3}
[tag="N.*"]{0,2} 1:[tag="N.*"] [tag!="N.*"]

Figure 4.2: Example of a sketch grammar.

of a sketch grammar is a set of queries in corpus query language CQL,1

each with marked position of the two words that can form a collocation.
Only the words matching one of the queries are then considered as co-
occurrences for statistical computations. Each of the CQL queries is associ-
ated with a label that describes grammatical relationship between the par-
ticular two words. One grammatical label (or relation) can be assigned to
multiple queries.

Figure 4.2 shows a simplified and incomplete example of a sketch gram-
mar that captures only collocations in position of verb subject (relation
“subject”) and a modifier of a noun (relation “modifier”), for an English
corpus morphologically tagged using the Penn Treebank tagset.2 Grammat-
ical relation names are on lines starting with “=” and are followed by CQL
queries with particular positions marked as “1:” (this word will display as
headword) and “2:” (this word will display as a collocate in a word sketch
table with heading “subject”).

The first subject query describes a noun, followed by 0–3 adverbs (tags
matching “RB.?”), possibly by “be” and other 0–2 adverbs, and a verb not
in form of passive participle. Such a query would match e.g. the expression
“ideas furiously sleep” and if the corpus contains such expression, one hit
of co-occurrence of “idea” and “sleep” within the subject relation would be
recorded for the purpose of statistical computations.

1. A short CQL tutorial can be found at
www.sketchengine.co.uk/documentation/wiki/SkE/CorpusQuerying
2. www.sketchengine.co.uk/documentation/wiki/tagsets/penn

61

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

The CQL queries in the sketch grammar are evaluated against the whole
corpus and for matching pairs of words, the statistics are computed and in-
dexed in a specialized database. Access to the indexed data is provided by
WMap library which is a part of Manatee. Processing of a 100 million word
corpus with a sketch grammar of 38 CQL rules, in parallel on 8 CPU cores,
takes about 17 minutes which probably makes it a fastest partial depen-
dency parser in the world.

4.1.2 Processing directives

Several enhancements of this basic format have been developed, the usages
of which are marked by keywords called processing directives. For exam-
ple, the default definition introduced above is asymmetric, e.g. only “idea”
is identified as a subject of “sleep” and not vice versa. Also, we would not
want “sleep” to be identified as subject of “idea”. The *DUAL processing di-
rective makes the relationship bidirectional and makes it possible to name
the inverse relationship differently. An example of a dual rule is shown in
Figure 4.3.

Another possibility is to include a third word into the relationship, more
precisely into a grammatical relation name. This is done by the *TRINARY
directive – a third word can be labelled by “3:” within the CQL queries
and this word replaces the string “%s” in the relation name, potentially cre-
ating a large number of different grammatical relations. For example, the
*TRINARY rule in Figure 4.3 describing a noun followed by a preposition,
possibly a possessive pronoun, more nouns and a non-noun, would match
e.g. expression “test of my patience and”, putting “patience” into relation
with “test”, under the label “after of”, and vice versa, under the label “be-
fore of”.

Another related directive *COLLOC enables collocations listed within
the tables to capture more complex units than just words from the corpus.
For example, we can concatenate lemmas of more words (by continuing
labelling words in the CQL as “3:”, “4:” etc.), or use a different attribute than
(default) lemma, such as semantic tag, if available. Unlike the previous two,
this directive relates to a particular CQL query, rather than to the relation,
so the keyword is to be put before each relevant query. Examples in Figure
4.3 show both mentioned cases and the exact coding. The first rule would
put items such as “positive-feature”3 into the “semantic modifier” relation

3. Of course, the exact values would depend on the semantic tagging present in the corpus.
Here we assume that the corpus contains an attribute named “semantic” that would assign
the “positive-feature” value to words like “cute”.

62

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

*DUAL
=subject/subject_of

2:[tag="N.*"] [tag="RB.?"]{0,3} [lemma="be"]?
[tag="RB.?"]{0,2} 1:["V.[ˆN]?"]

1:[tag="V.N"] [tag="RB.?"]{0,2} [word="by"]
[tag="N.*"]{0,2} 2:[tag="N.*"] [tag!="N.*"]

*DUAL
=modifier/modifies

2:[tag="(JJ|N).*"] [tag="JJ.?"|tag="RB.?"]{0,3}
[tag="N.*"]{0,2} 1:[tag="N.*"] [tag!="N.*"]

*DUAL

*TRINARY
=after_%s/before_%s

1:[tag="N.*"] 3:[tag="IN"] [tag="PP\$"]?
[tag="N.*"]{0,2} 2:[tag="N.*"] [tag!="N.*"]

=semantic_modifier

*COLLOC "%(2.semantic)"

2:[tag="(JJ|N).*"] [tag="JJ.?"|tag="RB.?"]{0,3}
[tag="N.*"]{0,2} 1:[tag="N.*"] [tag!="N.*"]

=two_word_modifier

*COLLOC "%(2.lemma)_3.lemma"

[tag!="JJ.*"] 2:[tag="JJ.*"] 3:[tag="(JJ|N).*"]
1:[tag="N.*"] [tag!="N.*"]

Figure 4.3: An example of a sketch grammar with *DUAL, *TRINARY and
*COLLOC relations.

63

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

with e.g. “cat”, through expressions like “cute cat”. The second example
would gather “sweet little” as a collocate for “cat”, from expressions like
“sweet little cat”.

As we can see from the example, the directives may be combined arbi-
trarily.

There are more processing directives that make the work with sketch
grammars easier and extend the default possibilities.4 Here we will not go
into more detail – we have introduced the main features of the sketch gram-
mar formalism necessary for further discussion.

4.1.3 Coverage

Thanks to the simple concept, efficiency and worldwide intensive usage of
the word sketch application (about 4,000 active users at the time), there are
sketch grammars available for nearly 40 languages, mostly written by na-
tive speaker linguists. In our opinion, such a coverage is a strong support
for our “worse is better” philosophy. Although it is not following any par-
ticular linguistic theory, and although it is a very simple approach which
inherently makes many errors and is incomplete, the sketch grammar con-
cept of syntactic analysis is very suitable for needs of thousands of people,
unlike any other natural language parser in the world.

4.2 Extensions

Based on intensive usage of the word sketch application and user feature
requests, the word sketch application has been extended to serve more ap-
plications than two-word collocation extraction. All of them are based on
the features described in the previous section.

4.2.1 Multiword sketches

Since word sketches came to existence, there was demand for the same in-
formation for multiword units, like “take advantage” (which is very differ-
ent from “take”) or “climate change” (which is different from “change”).
Technically trivial solution would be to tokenize the corpus according to
the multiword units, however, it has serious drawbacks:

• with this solution, collocates would be multiwords as well which is
not desirable

4. www.sketchengine.co.uk/documentation/wiki/SkE/GrammarWriting

64

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

Figure 4.4: Illustration of transition from word sketch to corpus concor-
dance (source: www.sketchengine.co.uk).

• morphological tagging of multiwords is problematic
• multiwords do not have to form connected phrases (e.g. English

phrasal verbs like “look up”)
• multiword boundaries are not clear – e.g. should we consider “new

generation” as one unit or two?

We have implemented a method which allows users themselves to de-
cide what expressions are interesting, and where no special tokenization of
the corpus is needed [72].

The WMap library managing access to the indexed word sketch data,
provides methods for filtering the word sketch information according to a
particular list of corpus positions. Corpus positions enumerate word occur-
rences in the corpus – first word has position 0, second word 1, etc. So the
list of positions may be e.g. result of a query, or first million words in the
corpus, or words in a particular text type. At the same time, the word sketch
database contains a reverse index for each word-relation-word triple that
enables creating the list of corpus positions for the particular triple. This in-
dex is used for links from the word sketch tables to the actual occurrences
of the collocation in the corpus, in form of a corpus concordance (see Figure
4.4 for illustration).

By combining the two features mentioned above – filtering the word
sketch database, and the reverse index – it is possible to create e.g. a word
sketch for “take” only for occurrences where it goes with “advantage”: We
use the index for the triple take-object-advantage to get the list of its posi-
tions and then filter the word sketch for “take” by this list.

By this procedure, we can get collocations for “take” but not for “advan-
tage”. To be able to show e.g. “full” in the list of collocations, to capture the

65

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

frequent pattern “take full advantage”, we need to do this symmetrically,
by combining word sketch for “take” filtered by “advantage” with word
sketch for “advantage” filtered by “take”.

This approach does not require a special tokenization nor multiword de-
tection algorithms, and it is language independent, except the basic sketch
grammar. Also, multiwords do not need to form a connected part of the
sentence (but they may, depending on the CQL rules in the sketch gram-
mar).

The end users of the multiword sketch application have two options of
getting to a multiword sketch. The first follows the filtering procedure as in-
troduced above, using links connected to particular collocates, as illustrated
in Figure 4.5: User e.g. calls a word sketch for “water”, then they click on
“hot” to get a word sketch for “hot water”. The process is iterative, so they
may continue by clicking on “soapy” to get a word sketch for “hot soapy
water”. The second option is faster and probably more convenient for users
– they can enter directly “young man” as input and a special heuristic pro-
cedure tries to guess the correct grammatical relation which is then used for
filtering, based on frequency and part of speech selected by user.

4.2.2 Bilingual word sketches

Since 2005, there has been demand for bilingual word sketches by the lexi-
cographic community, which would help lexicographers in compiling bilin-
gual dictionaries, and language learners in finding translations of particular
collocations easily. However, there was never a concrete specification and
it was not clear how such application should look like. We have developed
three approaches to the bilingual word sketch challenge.

The first and most straightforward is referred to as BiM (bilingual man-
ual) – manual means that users themselves specify the translation of the
headword into the target language. Result is a word sketch in two lan-
guages, with aligned compatible grammatical relation columns, as illus-
trated in Figure 4.6. There is no attempt to align the individual collocations.

To be able to align compatible relations, either they must have same
names, in corpora of different languages (i.e. we need compatible sketch
grammars), or a mapping must be created between the relations to specify
which of them are compatible (this is the usual scenario). We have selected
to map relation names to a common base, rather than mapping each lan-
guage pair individually, as it reduces the amount of necessary manual work
from n2 to n, with respect to the number of the languages (or sketch gram-
mars). The mappings are defined in the sketch grammar using a newly in-

66

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

Figure 4.5: Transition from a word sketch to multiword sketch.

Figure 4.6: Bilingual manual word sketch.

67

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

*DUAL
=objet/objet_de

*UNIMAP object/object_of
...

Figure 4.7: Example of using the *UNIMAP directive.

troduced processing directive *UNIMAP. The definition in Figure 4.7, from
a French sketch grammar says that relation “objet” should be aligned to
“object” and “objet de” should be aligned to “object of” (or the appropri-
ate relations in other languages). We have created the mappings of the core
grammatical relations for 10 major languages, in collaboration with native
speakers of the respective languages. Once the mapping is available, this
functionality can be used with any pair of corpora of the two particular
languages.

The other two approaches to the bilingual word sketch challenge find
the headword translation to the target language automatically, and align
particular collocations with their equivalents in the target language. For
this task, we need a pair of comparable corpora (this variant is referred to
as BiC – bilingual comparable) or a parallel corpus (this variant is referred
to as BiP – bilingual parallel) which is implemented as two independent
corpora aligned to each other, within the Sketch Engine.5

For BiC, we need a bilingual dictionary with a very good language cov-
erage and as many translation equivalents as possible, for each word. Ini-
tially we were experimenting with Google dictionaries API, then the API
stopped to be freely available, so currently we try to build the dictionar-
ies from different available sources such as Wictionary6 (the quality of the
dictionary is much less important for this task than coverage).

Having a dictionary, we select the most salient (or the first, if there is
no information on salience) translation of the headword and create a word
sketch for this translation. We also show links to other possible translations,
in case that the first translation is not the desired one. Then we have two
word sketches: In the source (ws1) and target language (ws2). For each word
in ws1, we seek for its translations in ws2, regardless grammatical relations.
If one or more possible translations are found in ws2, the particular ws2

collocates are aligned under the particular ws1 collocate, as illustrated in
Figure 4.8. For better readability, we do not include grammatical relation

5. www.sketchengine.co.uk/documentation/wiki/SkE/Parallel
6. www.wiktionary.org

68

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

Figure 4.8: Example of a BiC word sketch.

names from ws2; rather than that, we supplement each collocation with
an example of its usage (obtained asynchronously, using the mentioned re-
verse index).

The BiP approach is very similar to BiC, with two exceptions. First, the
external dictionary is not needed. Thanks to the alignment (usually by sen-
tences), we can compute probability that word X translates as Y, for each
pair of words. Then we sort all possible translations for each word accord-
ing to this probability and save the top n to a dictionary (currently we use
10). In fact, we do not even need to calculate probability, a ranking is suf-
ficient – currently we are using the same logDice co-occurrence coefficient
that is used for scoring word sketch collocations. In the future, we plan
to test algorithms implemented within the well-known GIZA++ tool [133],
however, we do not assume big differences, as the quality of the dictionary
is not crucial for the task, as we have already mentioned.

The second difference is that we can verify the correctness of the col-
location alignment to a larger extent. Thanks to the corpus alignment and
mentioned word sketch reverse index, we are able to create a list of posi-
tions for both source and target language collocation pairs, and check if at
least some of them are aligned to each other. If not, the particular align-
ment is probably a mistake in the collocation dictionary or a miss in the
alignment algorithm, and it will be hidden from the user. This check is com-
putationally demanding (we need to do it for all collocation pairs), so we

69

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

have implemented this checking (again) asynchronously within the Sketch
Engine.

4.2.3 Word sketches for terminology extraction

Based on a requirement from a partner institution, we have also adapted
the word sketch functionality for terminology extraction. Using the sketch
grammar was not the first idea for terminology extraction we had – previ-
ously we tried working with n-grams – but the empirical evaluation by the
partner showed that accommodating sketch grammar machinery for this
purpose works better.

The Sketch Engine has a well developed functionality of finding key-
words (single words specific to one corpus or subcorpus, with respect to an-
other, general, or reference one), based on a straightforward formula called
Simple Maths [70]:

keyness =
freq per million + n

freq per million in reference corpus + n

where freq may be any type of frequency (within the Sketch Engine, it is
possible to use raw frequency, average reduced frequency [157] or docu-
ment frequency), and n > 0 is a smoothing constant – higher values prefer
frequent words, lower values prefer rare words. We have a very good expe-
rience with this type of statistics; it is very transparent and it does not have
significant drawbacks.

For term extraction, no modifications of the sketch grammar formalism
were needed; novel is the usage. We combined CQL queries recognizing
multiword units that can be considered term candidates – mostly noun
phrases – with extensive usage of the *COLLOC directive described ear-
lier, to create and index the particular term strings. Then, we applied the
existing Simple Maths statistics to the term candidates extracted from a
specialized corpus and term candidates extracted from a general corpus.
As a result, we get a list of term candidates, sorted by their “termhood”, as
illustrated in Figure 4.9.

4.3 Conclusions

The sketch grammar, together with related indexing tools, is a specialized
shallow parsing engine that has been designed independently on any lin-
guistic theories and treebanks, for a particular task. Despite that fact and
despite the actual simplicity of its design, it fulfills its purpose very well

70

4. SKETCH GRAMMAR: A SHALLOW APPROACH TO SYNTAX

=terms

*COLLOC "%(2.lc)_%(1.lc)"

2:[tag=="NN" | tag=="JJ" | tag=="VVG"] 1:[tag=="NN"]

*COLLOC "%(3.lc)_%(2.lc)_%(1.lc)"

3:[tag=="NN" | tag=="JJ" | tag=="VVG"]
2:[tag=="NN" | tag=="JJ" | tag=="VVG"]
1:[tag=="NN"]

Figure 4.9: Example of two CQL rules from the English term grammar, and
part of the result term list for a domain environment corpus.

and serves thousands of users worldwide. We have shown that it has poten-
tial to be extended and adjusted to other specialized practical tasks, namely
collocation extraction for multiword units, bilingual collocation extraction,
and extraction of terminology. Also, there is ongoing work in this direction
trying to combine term extraction with bilingual word sketches, to address
the problem of automatic bilingual terminology extraction.

The story of sketch grammars, including our contribution to it, forms
another support point for our general methodology considerations – name-
ly that design simplicity is the most important value, and that it is necessary
to start with a practical application when designing a parsing system, rather
than a language theory.

71

Chapter 5

SET – a light-weight parsing system

The SET parsing system,1 firstly introduced in [90], was designed by the
author according to the software development principles introduced in Sec-
tion 2.5.5. Namely, design simplicity was always the highest priority that
we took into account in all phases of development.

5.1 Initial considerations

The system was firstly developed for Czech and we originally tuned it
against the Prague Dependency Treebank data with interesting results, top
among rule-based parsers and not very far from the best statistical parsers
[90], as summarized in Table 5.1.

Then, because of discovering the methodology problems discussed in
Section 2.5, we changed the direction of development towards the needs
of applications. For the bushbank project described in Chapter 3 (and few
others), we needed phrase detection, so we prepared a few versions of the
grammar for phrase detection. For grammar checking, a different type of
output was needed, etc. We have dropped the idea of good results against
a treebank, and aimed the development at being able to provide what ap-
plications need, with simplicity in design as the highest value. And it is
that simplicity, thanks to which the parser is relatively easy to adapt to a
large variety of requirements. Dependency precision of the current version
of SET, compared to the PDT data, is around 55 percent.

The two other crucial values that were prioritized in the design, are us-
ability, and readability of the results. As discussed earlier, we consider the
traditional dependency and phrasal formalisms too cryptic for a user who
is not familiar with them in detail, and enforcing a lot of unexploited and
non-intuitive data. We have designed a new tree format that we call hybrid
tree that combines dependency and phrasal components. We describe this

1. SET is an abbreviation of “syntactic engineering tool” and accidentally, it is also a god
of the desert, storms, disorder, violence and foreigners in ancient Egyptian religion.

72

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

Testing set Average precision (%) Median precision (%)
PDT e-test 76.14 78.26
PDT 2000 83.02 87.50

Table 5.1: Historical results of the SET parser against the testing part of
the Prague Dependency Treebank, using unlabelled dependency precision.
These results were measured with SET version 0.3. The “PDT 2000” set con-
sists of 2000 sentences randomly selected from PDT that were accepted by
the grammar of the Synt parser [83] – by this experiment, we wanted to
measure accuracy on well formed sentences.

format in the next section; as we will see, its expressivity is the same as in
case of the traditional formalisms, with much more intuitive reading.

Apart from that, many output options have been implemented, includ-
ing regular dependency and phrasal trees, a bush output (with unambigu-
ous phrases and dependencies), output of all detected phrases and colloca-
tion information, so that it is easier to adapt the output of the parser to a
particular application.

For the sake of both simplicity and usability, we have selected the Py-
thon programming language for the implementation. Python is a very pow-
erful and readable language which itself makes orientation in the program
code easy, thanks to which the development speed is very high (which re-
lates closely to possibilities of flexible changing of the system behaviour
and fast implementation of new features [104]). As Python is an interpreted
language, its disadvantage is worse performance compared to languages
like C, C++ or Java. On the other hand, the application speed is not that
important in a research-aimed tool; rather than that, the speed of develop-
ment and straightforward usability is crucial. Once the tool is built into a
practical application, it can be further optimized, if needed. Also, despite
lower Python efficiency in general, the parser’s speed (about 7 sentences
per second, on one CPU core) is comparable to most state of the art parsers.

Python also enables a “download and run” usage; no compilation and
no installation is needed, which further increases usability of the tool. One
exception is a dependency of system’s graphical output on Python bindings
for the Qt4 library that are not part of standard installations of Python.

73

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

5.2 Hybrid trees

Let S = (w1, . . . , wn) be a sequence of words that forms a sentence. Let N
be an (arbitrary) set of nonterminals and L be a set of syntactic labels, that
will express the syntactic role of the word in the sentence. Hybrid syntactic
tree is defined as a tuple (S,N,L, d, l) where

d : {w1, . . . , wn} ∪N → {w1, . . . , wn} ∪N

is the dependency function and

l : {w1, . . . , wn} ∪N → L

is the labelling function assigning a string from L, to each word or nonter-
minal (analogously to dependency trees). One string from L is dedicated
for marking a special, phrasal type of dependency, that will be displayed in
a different colour in the hybrid tree illustrations.

The main difference between dependency and hybrid trees is the pres-
ence of nonterminals (we also refer to them as phrasal nodes) and phrasal
dependencies. The nodes connected to a phrasal node by phrasal depen-
dencies are considered components of the particular phrase, in the same
sense as in phrase structure formalism. It is allowed for the phrasal node to
be a target of both phrasal and common dependencies.

As always, the readability and usability of particular trees depends on
the particular implementation of the formal constraints, especially partic-
ular content of the sets N and L. The L set remains the same as in case of
dependency trees, except the special symbol for phrasal dependency. As for
set N , within our current schema we use the following nonterminals:

• <sentence> – the top symbol that covers the whole input sentence.

• <clause> that marks clauses within the sentence.

• <inter>, covering segments on the level of clauses or immediately
below it (e.g. segments interrupting clauses) that do not contain verb
and therefore cannot be marked as clauses, e.g. expressions in brack-
ets, comma-delimited or in quotation marks.

• <attr>, a special case of <inter> marking comma-delimited mod-
ifiers in apposition.

74

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

• <coord>, probably the most important, for marking the coordina-
tion relationships where all parts of the coordination are on the same
level of importance.

• Various non-terminals for named entity type of expressions, such
as <name>, <date>, <code>, <number>. Such kind of low-level
phrasal nodes can be also used e.g. for multiword prepositions like
“instead of” (the nonterminal here could be <prep>). However, it is
debatable to what extent should be these items identified by syntac-
tic analysis and if it should not be rather part of the preprocessing,
done by the named entity recognition tool, or even a tokenizer. We
are currently experimenting with external named entity recognition
tools.

Thanks to the hybrid tree format, we can combine the advantages of the
dependency and phrasal formalisms discussed in Section 2.2.3. The coordi-
nation nonterminals were the main motivation for the proposal of hybrid
trees, as the pure dependency trees are not able to record the coordination
phenomenon in a natural way, which subsequently leads to confusing an-
notations and makes coordinations hard to be recognized correctly in de-
pendency parsing. On the other hand, hybrid trees allow easy annotation
of non-projective constructions by the dependency means. (This idea is not
new [56] but the current state of the art prefers rather purity of the formal-
ism.)

Also, we consider dependency formalism better for describing complex
noun phrases: In Section 2.2.3, analysis of phrases like “new generation of
fighters” is discussed as a disadvantage of the dependency formalism, how-
ever, in real sentences it is usually hard to decide the right bracketing, e.g. if
“(low speed) of transfer” is better than “low (speed of transfer)”, so it would
rather bring a lot of unnecessary, probably often inconsistent decisions, and
noise into annotation.

Of course, the introduced implementation is not to be taken as a dogma:
our belief is that it should be always the final application who decides the
exact implementation and the formalism. We have already slightly changed
the particular schema several times during the development of SET, and
e.g. for an application for detection of Czech analytical verb forms, phrasal
nodes were used to mark the verb phrases (as reported in [8]).

The most important feature of the hybrid trees is their ability of com-
bining advantages of dependency and phrasal formalisms; the particular
setting is secondary. The feature helps with readability of the trees, as illus-
trated in Figure 5.1, and we believe it can help with the parsing process as

75

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

well, in case of thoughtful usage, as different nature of different syntactic
phenomena can be taken into account.

velmi
modifier

těžký a rozměrný

fragment

,

kterýsubject

zůstal

<coord>attr <clause>attr

velmi
modifier

těžkýcoord

aattr

rozměrnýcoord

fragment

,auxkterýsubject

zůstal
attr

Figure 5.1: Comparison of dependency and hybrid tree on sentence part
“velmi těžký a rozměrný fragment, který zůstal” (“very heavy and (very)
bulky fragment, that stayed”).

5.3 Analysis by pattern matching

We have decided to use the pattern matching approach to describe the rules
according to which the system analyses the input sentences. Pattern match-
ing belongs to techniques that are widely used in natural language process-
ing. Its main advantage is transparency and simplicity which is in agree-
ment with our general values. Applications based on pattern matching are
usually fast, understandable for people and suitable for further extensions.

In context of syntax processing, pattern matching is often used in partial
parsing and morphological disambiguation [1, 15]. Word sketches, a suc-
cessful commercial application already described in Chapter 4, are based
on the pattern matching principle as well.

We have adapted the notion of a pattern to describe probabilistic linking
rules that are able to cope with the unrestricted word order of the Czech
language. Let us have a finite number of known syntactic constructions –

76

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

patterns. Then, we consider the process of analysis as searching patterns in
the input text, sorting them according to their estimated probability, and
finally selecting the most probable non-conflicting ones, to build a syntactic
tree.

Our patterns are similar to CQL queries in the sketch grammar formal-
ism, as introduced in Chapter 4: each pattern is a sequence of word class
restrictions that describes a syntactic phenomenon. The simplest example is
an adjective followed by a noun, in Czech with agreement in case, number
and gender, forming a noun phrase (or alternatively, determining a depen-
dency adjective→ noun). The patterns can contain gaps for tokens that are
not relevant for the particular phenomenon, e.g. the symbolic pattern

preposition . . . noun

(in Czech with case-agreement) for describing a basic prepositional phrase
has a gap for any number of adjectives, determiners etc. More complicated
patterns can also be used, e.g.

verb . . . comma subord conjunction . . . verb

for description of a subordinate clause.

5.3.1 Parsing algorithm

The realisation of a pattern in the input sentence (the particular words cov-
ered by the pattern) is then called a match. In the parsing process, only a
limited number of matches is selected to obtain complete and unambiguous
sentence analysis.2 This selection is driven by a weight assigned manually
to each pattern, and length of the resulting match, e.g. the distance between
governing and dependent word, or between members of the coordination,
according to the simple formula

selection weight =
pattern weight

match length

We have tested enriching this simple weighting by considering match
position in the input sentence, and values of external collocation statistics
for words in the particular matches. These two have been implemented and

2. Ambiguous sentences could be described with more options of how the matches are
selected; currently one of the output formats is displaying all found matches with their
ranks, so the tool offers also a type of ambiguous analysis.

77

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

can be used, however, we did not spot any significant improvements by
any tests (rather the opposite), so we returned to the simplest and most
transparent weighting.

Given the set of patterns, the parsing algorithm consists in identify-
ing the patterns in the input and selecting the best matches. Searching the
matches in the input text can be compared with regular expression match-
ing.

There is a theoretical objection to applying regular language machinery
to natural languages, namely that the natural language structure is at least
context-free, maybe even context-sensitive [161]. However, we do not care
about this too much, because:

• We do not address the decision problem – if the particular sentence is
grammatical or not – but just try to find most probable analysis pro-
vided the sentence is correct. The parser assumes every input sen-
tence to be grammatical.

• The available proofs regarding non-regularity or non-context-free-
ness of natural languages always consider a nesting of some type,
to an arbitrary depth. However, human brain has no infinite stack
which is necessary for understanding arbitrary nestings. Corpus sen-
tences provide evidence that a common level of nesting is 1 or 2 and
the limit lies somewhere around 5 or 7 (may relate to psycholinguis-
tic findings [114]). Apart from that, as we will see, our implementa-
tion of the parsing algorithm allows arbitrary nestings of some types.

• As we have shown on the sketch grammar example, there are suc-
cessful approximative approaches to language analysis that work
sufficiently, and are successful thanks to their simplicity rather than
complete description of the language. This is the way of develop-
ment we want to follow.

For the usage in the parsing algorithm, the patterns are divided into
groups (or layers) according to the nature of the described phenomena; all
layers are matched simultaneously and compete with each other, but the
parser handles each of them in a slightly different way. Currently, SET con-
tains 3 pattern layers:

• relative clauses – this layer contains rules identifying phrasal nodes
for clauses, insertions and apposition attributes – <clause>, <int-
er> and <attr>. When such a node is identified, the matching pro-
cess is ran once again (matches with higher priority from the previ-

78

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

ous run are kept), but words under the identified phrase are made in-
visible for that run. This behaviour enables nesting of relative claus-
es, and correct analysis of long distance links in case of insertions of
one clause into another which is quite common in Czech. For exam-
ple, in case of sentence “A man, who laughed, died” it would not
be possible to capture the dependency man → died, as it would be
always beaten by man→ laughed. When the clause “, who died,” is
identified, its words are skipped in the next round of matching and
the dependency man→ died can be discovered.

• coordinations – this layer identifies the <coord> phrases. Its special
evaluation is, if two coordinations are identified next to each other,
they are joined to one bigger coordination. This enables analysis of
coordinations with any number of members, with only binary rules,
which simplifies the pattern matching grammar significantly.

• dependencies – all the other rules, mostly for finding dependencies,
as the name suggests, but can contain also phrasal rules on lower
levels than coordinations, such as multiword prepositions or named
entities.3 There is no special behaviour on this level, except one de-
tail: The parser allows only one dependent node for each preposition
(recognized by the “prep” alias, as described below), as it is not pos-
sible for a preposition to have more than one object, and it is not
possible to express this restriction within the grammar itself.

5.3.2 Rule syntax

SET includes a readable and expressive definition format for the patterns
to be transparent and easily editable. It is similar to sketch grammar CQL
queries but developed independently and more oriented on syntactic anal-
ysis, rather than querying a corpus. In this section, we describe the main
aspects of the rule syntax; a full and up-to-date reference is available on the
project page.4

Each pattern definition consists of two parts, a template and a set of
actions. If a template is matched during parsing, the corresponding actions
are executed.

The template, introduced by “TMPL:” keyword, defines the pattern: a
sequence of word classes involved, including gaps. A word class is de-

3. SET can be used for recognizing named entities. However, currently there is no com-
prehensive rule set for named entities available and their analysis relies on external tools.
4. nlp.fi.muni.cz/projects/set

79

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

scribed with a word form, lemma and/or a morphological information,
matched against a tag from the preceding morphological analysis. Using
labelled predefined restrictions, e.g. “infinitive” or “noun”, is also possible.

The actions instruct the parser how to interpret the particular match, e.g.
they can contain instructions for marking a dependency relation between
two words. They can also specify the weight of the pattern and additional
match restrictions such as morphological agreements.

In the following example:

TMPL: numeral ... noun
MARK 0 DEP 2

the template on the first line specifies a numeral-noun pair, probably within
a single noun phrase, such as “three dogs” or “three beautiful dogs”. In the
action part on the second line, the parser is instructed to mark a numeral→
noun dependency, in case the pattern is used (MARK identifies the depen-
dent word, DEP the governing word – see below for precise description).

There are several possibilities of expressing restrictions within a tem-
plate. The basic one is a single condition, a pair of input attribute (word,
lemma or tag) and description of its value, enclosed in round brackets, for
example:

• (lemma world) – will match input words with lemma world.
• (word and|or|so) – will match input words and, or or so.
• (tag k[123].*c2) – will match any substantive, adjective or pronoun in

genitive (using the Ajka tagset [159], see also below).

As can be understood from the examples, disjunction (logical or) of val-
ues is allowed, denoted by a vertical bar (|), and in case of the tag attribute,
it is possible to use regular expressions.

A named variable enables reusing a condition in multiple templates,
and express a restriction on more input attributes at the same time. It is
expressed by dollar sign followed by a variable name that can contain al-
phanumeric symbols, dots or underscores. If such a variable is found, its
definition is looked up below the template where it was used. The defini-
tion uses the following format:

$NAME(attribute): list of values (constraints) separated by whitespace

80

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

Only the first following definition applies. More constraints within the
definition line are interpreted as their discunction (logical or). If more defi-
nition lines immediately following each other are found, it is interpreted as
a conjunction (logical and). Negative constraints can be created using the
“not” keyword. The following example:

$CONJ(word): k8.*xC k8.*xS
$CONJ(word not): and

defines a named variable $CONJ which would match any word with mor-
phological tag matching one of the two regular expressions on the first line,
but not if the word is “and”.

A more complicated variant of named variables can be also used for in-
terconnecting restrictions. Imagine you want create a rule for matching a
coordination consisting either of two nouns or two adjectives (but not noun
and adjective). This can be achieved by using the following syntax with the
MATCH keyword:

$C1 (word and) $C2
...
MATCH $C1(tag) $C2(tag)
k1 k1
k2 k2
END

This construction defines both $C1 and $C2 at the same time and speci-
fies that either both of them are nouns (tag “k1”) or both of them are adjec-
tives (tag “k2”), otherwise the template does not match.

Last option of expressing a restriction is a global alias (different from lo-
cal named variable) that we have already used in the illustrative examples
at the beginning of this section. It is defined by the CLASS keyword, e.g.

CLASS prep (tag k7)

allows using string “prep” instead of “(tag k7)” throughout the grammar.
Some of these definitions have also impact on the parsing process, e.g. the
preposition definition above determines which tokens should be allowed

81

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

to be the target of only one dependency, as explained in the end of Section
5.3.1.

Also, two special restrictions similar to aliases were implemented – we
named them “bound” and “rbound” – that can match the beginning and
the end of the sentence respectively, as well as punctuation, or a specified
conjuction.

We have already shown that the rule format allows gaps matching any
number of any words, marked as three dots. It is also possible to restrict the
content of the gaps. A named variable whose name ends with an asterisk is
interpreted as any number of words matching the definition of the variable.
For example,

$ADJS*(tag): k2

defines a variable $ADJS* matching any number (including zero) of adjec-
tives.

Actions follow the template specification in the rule. An action is a func-
tion taking one or more arguments that often refer to restrictions in the tem-
plate, by indices starting with 0. The following actions can be used:

• MARK is used for marking one or more words. It is used in two cases:

◦ Adding a phrasal node: in this case, the last argument must be
the name of the new node. Example: “MARK 0 2 4 <coord>”
creates a phrasal coordination node consisting of tokens with
indices 0, 2 and 4.
◦ Marking a single word, which is then assigned a dependency

using the DEP action (see below).

• AGREE is used for testing grammatical agreement. It takes 3 argu-
ments, the first two are the token indices, the third describes the
morphological categories to be tested. Example: “AGREE 0 2 cng”
tests a case-number-gender agreement on tokens with indices 0 and
2, using attributive morphological tagging used by the morphologi-
cal analyzer Ajka [159], where lowercase letters encode morphologi-
cal attributes (c = case, g = gender, n = number) and uppercase letters
or numbers denote their values, e.g. P stands for plural, if preceded
by n. The action requires the values of the given attributes to be the
same. Similar agreement restrictions can be implemented for other
types of morphological tags.

82

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

• DEP determines the dependency for the result of the MARK action.
It takes a single argument describing the token index that the MARK
word (or a newly created phrasal node) will depend on.

• HEAD marks the head of a phrasal node created by the MARK action.
It takes a single argument – the token index to be marked as the
head. This is important namely by converting hybrid trees into de-
pendency ones.

• LABEL assigns a syntactic label of the word. Its argument is any
string describing a syntactic function, e.g. subject, object.

• PROB assigns a weight (although named according to probability, it
does not need to meet the probability axioms) to the pattern. It takes
a single argument – the weight which is any positive number. If the
action is not used, the weight defaults to 100. The PROB keyword can
be also used within the MATCH block, with the same effect – prefer-
ring some of the pairs to the others. If we modify the example above:

$C1 (word and) $C2
...
MATCH $C1(tag) $C2(tag)
k1 k1
k2 k2 PROB 50
END

the rule will prefer nouns in coordination to adjectives. Weight of
adjectives is twice as low as the default weight of nouns, so in case
of a conflict, the rule would select adjective coordination only in case
it is at least twice as short as the conflicting noun coordination.

Two more illustrative examples follow:

TMPL: verb ... $AND ... verb
MARK 0 2 4 <coord> PROB 500 HEAD 2

$AND(word): , a ani nebo

The template in this example describes a coordination of two verbs us-
ing one of the Czech conjunctions a, ani, nebo (and, neither, or), or a comma.

83

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

The actions say that the relevant tokens should be marked as a coordination
with the conjunction being the head of this constituent. Also, the weight of
this pattern is increased from default 100 to 500.

The last example:

TMPL: noun $...* comma (tag k3.*yR) $...* verb
$...* rbound
MARK 2 5 7 <clause> DEP 0 AGREE 0 3 gn

$...*(tag not): k3.*yR

can be used for matching relative clauses. The template matches a sequence
consisting of a noun followed (possibly) by a gap (which cannot contain a
relative pronoun, as specified on the last line), a comma, a relative pronoun,
again a possible (restriced) gap, a verb followed by another gap and a spe-
cial rbound restriction matching the end of the sentence, one of the selected
conjunctions, or a punctuation. Such a relative clause (its border words and
the main word – the verb) is enclosed under a <clause> phrasal node
which is made dependent on the preceding noun, if the agreement in gen-
der and number between the noun and the relative pronoun is confirmed.

5.4 Usage

The system expects a vertical file as input (one word per line, tab-delimited
columns for word, lemma and morphological tag). The preloaded grammar
for Czech uses the Ajka tagset [159], however, the positional tagset used e.g.
in the Prague Dependency Treebank, can be also used with this grammar
– the conversion was implemented within the tool and can be activated
by a command line switch. The preloaded English grammar uses the Penn
Treebank tagset [103]. Ambiguous comma-delimited lemmas and tags are
allowed in the input. Vertical files containing more sentences can also be
processed: in this case, the “<s>” mark on a separate line is to be used as
sentence delimiter. The tool processes the input as a stream, so analysis of
big files (e.g. corpora) is possible, provided they contain sentence delim-
iters.

Apart from the two default grammars for Czech and English, a grammar
for Slovak has been developed [111], and grammar dedicated for detection
of verb phrases [8], as defined in the bushbank project. The latter achieved
best results in verb phrase detection, against the bushbank data, as reported
in Section 3.4. Both of them were primarily created by bachelor students

84

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

which illustrates that the grammar format is comprehensible and easy to
use, even for non-technical people (the author of the verb phrase grammar
was a student of Czech at a faculty of arts).

The parser can be run right after download from a command line:

./set.py [OPTIONS] file

If file is not given, the standard input is read. Important options include:

• -g – graphical output (Python Qt4 bindings are required)
• -d – output in form of dependency trees
• -p – output in form of phrasal trees
• -b – output bush
• -v – verbose: output analysis details (all found matches with their

weights)
• --cout – output in form of collocations
• --phrases – output all found phrases (includes all nested phrases)
• --short-phrases – output selected phrases, as needed for bush-

bank annotation
• --long-phrases – the same as above, but do not split the phrases

on prepositions (trust the parser can resolve PP-attachment well)
• --sconll – output dependency trees in simplified CONLL format5

• --postags – use Czech positional tags on input with the default
grammar
• --maxlen=<num> – parse only sentences shorter than <num>words

(helps efficiency; recommended limit is 100)
• --grammar=<path> – use an alternative grammar

Output is always provided in the text form; if -g was used, a graphical
window is displayed in addition. For all types of syntactic trees, we use the
following textual coding (it is more or less a guideline for drawing the tree,
for the graphical environment):

• ID of the node (integer number)
• name of the node (e.g. word form or <coord>)
• ID of the governor node (integer number)
• dependency type – “p” or “d”, for phrasal (blue) or dependency

(black) edge

5. nextens.uvt.nl/depparse-wiki/DataFormat

85

5. SET – A LIGHT-WEIGHT PARSING SYSTEM

• dependency label of the node (optional)

A web interface to the tool named wwwSET (linked from the project
page)6 has been developed which gives the most important types of results
together on one page. As input, it allows a plain text sentence (in that case,
the sentence is tagged automatically using the Desamb tagger [171]) or a file
in the vertical format. It is also possible to upload an alternative grammar
that will be used instead of the default one.

5.5 Conclusions

We have introduced SET, light-weight parsing system with a pattern match-
ing grammar and rich output possibilities. Its development was based on
the principles declared in Section 2.5.5, namely design simplicity and us-
ability were the main values. During the development, the evaluation of
the grammar against treebank data was abandoned, and a strong emphasis
on usage in applications was introduced.

This approach has already its first visible results: although still in de-
velopment, and although it is significantly worse than the best statistical
parsers according to testing against treebank data, the analyser has been
used in more collaborative projects than is usual for this type of tool [126,
125, 4, 3, 132, 152]. We describe some of the particular applications in the
next chapter.

6. nlp.fi.muni.cz/projects/set

86

Chapter 6

Applications

In this last chapter, we discuss how the automatic syntactic analysis can be
accommodated to serve various real-world NLP applications immediately,
neither as a base for further, theoretical, semantic processing, nor in the far
future when it will (maybe) be perfect. In most cases we refer to the sketch
grammars and to the SET system, as described in the previous chapters, and
we show prototypes of the real-world applications with syntactic analysis
as part of the process. We will see that very important part of the accom-
modation is that the syntactic analysis tool is flexible, easily adjustable and
simple which disqualifies the statistical tools to significant extent, at least in
the initial phases of the research.

6.1 Information extraction for Czech

Unlike Miyao [118] whom we referred to earlier, we aim at the “extract
all we can” version of the information extraction task: given an input text,
convert as much information as we can to a formal database format. The
following text describes a joint work with Vı́t Baisa, within the scope of a
applied research project for the Czech ministry of interior. Author’s contri-
bution to this work is ca. 70 percent.

We have implemented an information extraction system for Czech –
EFA (abbreviation form “extraction of facts”) based on pipeline processing
of the input plain text: the process involves tokenization, sentence bound-
ary detection, morphological analysis and disambiguation, syntactic analy-
sis, semantic noun and prepositional phrase classification, and output rep-
resentation. We have discussed the processes below the level of syntactic
analysis in Section 2.1, so we will skip their description within this section.

We use the bush output of the SET parser described in Chapter 5. This
type of output contains noun, prepositional, verb phrases and clauses, as
illustrated in Figure 6.1, together with dependencies among them. We fur-
ther classify these phrases semantically, according to what type of infor-

87

6. APPLICATIONS

<s>Myslı́m , že skinheadi v noci do města nechodı́ .
<clause> Myslı́m
<vp> Myslı́m
<clause> skinheadi v noci do města nechodı́
<clauseconj> (k8xS): že
<vp> nechodı́
<phr> skinheadi
<phr> v noci
<phr> do města
</s>

Myslím

skinheadi v noci do města

nechodí

Figure 6.1: Simplified SET output in the bush format, for sentence “Myslı́m,
že skinheadi v noci do města nechodı́.” (“(I) think that skinheads do not go
in the city in the night”).

mation they contain. We have designed a set of semantic labels, that are
mostly answers to wh-questions, together with an algorithm for mapping
the syntactic phrases to these semantic labels. The result is then turned into
a relational database record, as illustrated in Figure 6.2. The list of semantic
labels follows:

• přı́sudek (predicate)
• podmět, kdo/co (subject – who, what – nominative)
• komu/čemu (whom, what – dative)
• koho/co (whom, what – accusative)
• instrument, kým/čı́m (by whom, by what)
• kde (where)
• kam (where to)
• odkud (where from)
• kdy (when)
• od kdy (when from)
• do kdy (when to)
• důvod, proč (why)
• způsob, jak (manner – how)

88

6. APPLICATIONS

kam do města

kdo/co skinheadi

kdy v noci

přísudek nechodí

přísudek Myslím

Extractionof FActs – results
Myslím, žeskinheadi vnoci do městanechodí .

skinheadi v noci do městanechodí

Myslím

Figure 6.2: Result of Extraction of facts for sentence “Myslı́m, že skinheadi
v noci do města nechodı́.” (“(I) think that skinheads do not go in the city in
the night”).

accuracy of phrase detection (F-measure) 87.7 %
accuracy of phrase classification 79.7 %
overal accuracy 69.9 %

Table 6.1: Results of EFA initial evaluation.

The mapping algorithm is straightforward in case of noun phrases –
in Czech, the wh-questions mostly correspond to the case of the phrase.
In case of prepositional phrases, this correspondence is more complicated;
almost all of the preposition-case pairs can correspond to more semantic
classes. We have used lexical semantic information, namely a list of specific
hypernyms, from the Czech WordNet [138] for approximation of the phrase
semantics, thanks to which we are able to distinguish e.g. locations (“in the
city”) from time expressions (“in the next hour”) [3].

Initial evaluation on 50 randomly selected sentences from news group
texts showed that the overall accuracy of the system is around 70 percent,
see Table 6.1. This is probably not enough for precise gathering information
from texts e.g. for automatic reasoning. However, it is enough for high-
lighting certain types of information (e.g. by different colours, as illustrated

89

6. APPLICATIONS

Figure 6.3: Illustration of EFA highlighting mode.

in Figure 6.3) which will help people scan texts quickly rather than read
it, and focus only on interesting information, e.g. when looking for poten-
tially dangerous posts on internet forums. This was the original purpose of
the development, and the final application is currently running in testing
mode.

We have also developed a web interface of the application for demon-
stration purposes1 which takes a plain text or a web page URL as input,
and returns the extracted information. The result can be displayed in three
formats: visually structured tables (as in Figure 6.2), XML, or coloured text,
as illustrated in Figure 6.3.

Future work, besides increasing precision of all components in the pipe-
line, includes applying the same type of processing in the information re-
trieval task and question answering: a query (including its wh-words) will
be analysed using the introduced semantic labels, and compared with the
documents within the database, analysed in the same way. This approach
should solve some of the problems outlined in the introduction. Both of
these applications are currently in development, but so far without salient
results.

Also, for technical reasons, we want to integrate the phrase classification
into the syntactic analysis process, as labels within the SET grammar, which
will result into more “semantic” syntactic analysis. We believe this will lead
to better maintainability and flexibility of the whole pipeline, which will
enable faster enhancements in the future.

1. nlp.fi.muni.cz/projekty/set/efa/wwwefa.cgi/first_page

90

6. APPLICATIONS

<inference type="effect" verb="dochutit"
mean="to_flavour">

<ruleset id="taste_like" inf_verb="chutnat"
negation="False">

<rule case="c4" prep="" inf_case="c1" inf_prep=""/>
<rule case="c7" prep="" inf_case="c6" inf_prep="po"/>

</ruleset>
</inference>

Figure 6.4: Inference rule saying that to flavour X (expressed by accusative
= c4) with Y (instrumental = c7) has an effect that X (nominative – c1) tastes
like Y (expressed by preposition “po” and locative = c6). Source: [126].

6.2 Automatic reasoning for Czech

Automatic reasoning, or textual entailment for Czech is being explored by
Zuzana Nevěřilová [126]. Her prototype system uses the bush output of
the SET parser for identifying the structure of the sentence, so the syntactic
level of this project is relevant to the topic of this thesis.

The textual entailment project has introduced a concept of transforma-
tion rules, describing algorithms for generating new valid sentences (also
called hypotheses), provided the input sentence is valid. The rules are writ-
ten in XML, as illustrated in Figure 6.4, and work over the bush syntactic
representation of the sentence. They can be classified into 4 groups [126]:

• effect – after performing the activity described in sentence, the hy-
pothesis holds
• precondition – before performing the activity described in sentence,

the hypothesis holds
• near synonymy – the propositions are judged as equivalent
• conversion between active and passive verb forms

The original set of rules is hand-written, however, it can be bootstrapped
automatically, e.g. using verb synonyms, as reported in [126].

An evaluation of two sets of the transformation rules was performed,
with very good results, as summarized in Table 6.2. As source data, 2400
sentences from the domain of cooking recipes were used. Firstly, only the
set of 175 manually created rules was used, which was able to generate 1783
hypotheses, out of which 1533 was correct. Then, the group was automati-
cally extended using synonym information from the Verbalex lexicon [44],

91

6. APPLICATIONS

Rule set
sentences # syntactically # semantically

generated correct correct
175 manual rules 1783 1633 (91.6%) 1533 (86.0%)
599 (276) rules 2826 2598 (91.9%) 2443 (86.4%)

Table 6.2: Results of evaluation of the transformation rules.

to 599, out of which 276 were used (matched in the input data). From the
same group of sentences, this set of rules generated 2826 hypotheses, out of
which 2443 were correct. Both of these results indicate 86 percent precision;
recall cannot be well estimated, as it is probably impossible to list all the
correct hypotheses following from a sentence.

We consider this result very important in context of information extrac-
tion and question answering, where it can help much to address the prob-
lem of data sparseness.

A rigorous evaluation set was also built which presents a different ap-
proach to evaluation of the textual entailment [124]. It contains pairs (text,
hypothesis) from reading comprehension tests for children and adults of
various ages, together with indication of correctness of the hypotheses. This
data set will allow evaluation of both precision and recall of the system us-
ing a practical task, in a way which is different from the precision evalua-
tion described above. However, the current reasoning system has not been
evaluated against this data yet.

6.3 Authorship recognition of Czech texts

Within the project for the Czech ministry of interior, that we have already
mentioned, a tool for authorship recognition and verification is being devel-
oped and tested [151]. The tool is designed for both authorship attribution
(assigning an author from a given group of authors, to a particular text)
and authorship verification (deciding if the two texts are written by the
same author, without knowing the set of authors in advance). The work is
directed at an automatic or semi-automatic forensic linguistic tool, such as
the ALIAS software2 for English [21].

This section describes a collaborative work with Jan Rygl and Kristýna
Zemková. Author’s contribution to this work, besides parser development,
is ca. 40 percent.

2. aliastechnology.com

92

6. APPLICATIONS

6.3.1 Current approach

Algorithms for both authorship attribution and authorship verification are
based on machine learning, with the following attributes, also referred to
as stylometric features [151]:

• relative frequency of important morphological tags – 64 selected
morphological tags have been used
• relative frequency of important parts of speech (PoS) – considered

separately at the beginning, at the end, and in the middle of sentence
• relative frequency of important PoS bigrams – considered in the

same way as single parts of speech
• average sentence length – expressed in number of alphanumeric

words
• relative frequency of important punctuation characters like com-

mas, semicolons, colons, question marks. . .
• relative frequency of stoplist words – as stoplist we considered 75

most frequent Czech words
• relative volume of repeated words considered separately for differ-

ent parts of speech

These text attributes yield a high number of features (e.g. the frequency
of stoplist words gains 75 features, one for each word) that are later used
as input for machine learning. Vector consisting of these features, derived
from available texts of a particular author, is then referred to as the author’s
stylome (analogy to genome in biology).

Two different approaches have been tested within the project. One-layer
machine learning which compares the two stylomes using the support vec-
tor machine (SVM) method [167], simpler and faster in terms of both train-
ing phase and actual processing, compared to the second one. The second
approach groups the stylometric features into several sub-vectors, or sub-
stylomes, on which similarities are computed. Then, another layer of ma-
chine learning is used, learning on the computed similarities [150]. This
approach is called two-layer machine learning.

6.3.2 Syntactic features

We have performed extensive experiments with including features based
on syntactic analysis in the authorship verification machine learning pipe-
line. Some similar experiments have been earlier done for English [49] with

93

6. APPLICATIONS

unclear interpretation; we have implemented a different approach, regard-
ing the syntactic features. We have designed two sets of features based on
syntactic analysis within the SET parser, the first (further referred to as syn-
tax1) being:

• average maximum dependency tree depth – longest path from the
root to a leaf in the dependency tree gained from the -d output of
the SET parser
• average maximum dependency tree branching factor – maximum

number of children of any node in the dependency tree
• relative frequency of dependency tree labels – 12 dependency la-

bels available in the SET dependency output were used
• relative frequency of phrasal tree non-terminals – 19 non-terminals

available in the SET -p output were used

We believe these features may contribute to the author’s stylome, as e.g.
maximum dependency tree depth or its maximum branching factor capture
the abstract way which authors use to building their sentences, to a certain
extent, and dependency labels or phrasal non-terminals can tell us about
frequency of certain types of phrases. The results of initial experiments with
this set of features is described in [152].

Later, another set of syntactic features has been added to the first one
(the combination is further referred to as syntax2):

• grammar patterns within phrasal tree implemented as sequences of
non-terminals from SET -p output
• relative frequency of syntactic bigrams of morphological tags –

syntactic bigram is a pair of words connected by a dependency; only
the part of speech and case were considered among all morphologi-
cal features, to reduce the option space

Clearly, these two new features can describe elements of an author’s
style as well – patterns can e.g. capture author’s common clause construc-
tions, bigrams can record frequent common bindings that the author uses.

6.3.3 Evaluation

The evaluation data were blog texts from 2012 automatically downloaded
from a public Czech blogging site3 and classified for authorship, accord-
ing to the html markup. 5368 documents were used, with average length

3. blog.ihned.cz

94

6. APPLICATIONS

of 300 sentences (and with relatively high variance – length of individual
documents ranges from 20 to 500 sentences).

Evaluation was driven by the standard methodology in the stylometry
area [79, 49], except our testing set consisted of internet blog texts, rather
than literary works, as our application aims at this text type. For both train-
ing and testing, pairs of documents were used with the same proportion of
positive and negative examples. Authors from the training part of the data
were always different from authors in the testing part. Accuracy defined as
number of correctly judged pairs divided by number of all pairs was used
as the evaluation score.

Two training and testing configurations were used:

• small data with 680 training and 216 testing pairs of documents,
which enabled more efficient evaluation of all the combinations of
features, for indication of which ones are the most promising candi-
dates
• big data with 3656 training and 960 testing pairs of documents; this

set was expected to provide more reliable results, however, the com-
putational complexity allowed us to evaluate only the most perspec-
tive feature combinations

The results of the evaluation are summarized in Table 6.3. From all com-
bination of features, only the best results are shown; however, during the
experiment, all combinations of the feature groups introduced above were
examined. The baseline is 50 percent because of equal proportion of posi-
tive and negative examples in the testing set.

In case of one-layer machine learning, the original 7 groups of features
gained 60.7% precision; syntactic features themselves were more successful,
even more than combination of syntactic features with the original 7 feature
groups. Best result was achieved using a sub-group of the original set of
features together with all the syntactic features.

In case of one-layer learning and big data, the combination of original
features with the first group of syntactic features was the best. Sub-group of
the original set of features together with one group of the syntactic features
win also in case of two-layer machine learning.

The two-layer machine learning is mildly more successful and the small
set of documents seem to be somehow “easier” than the big one. It is dis-
turbing that there are accuracy fluctuations for all the used feature sets, for
different evaluation sets and machine learning methods. It is not easy to say
which one of them is the best, although the big data set is probably more
representative than the small set.

95

6. APPLICATIONS

features one-layer one-layer two-layer two-layer
small data big data small data big data

original7 60.7 63.5 65.0 64.2
syntax1 56.9 58.5 65.5 60.8
syntax2 65.3 56.2 58.9 52.7
original7 + syntax1 60.2 63.9 65.9 63.2
original7 + syntax2 63.9 61.0 62.8 64.2
combination1 67.2 60.0 65.5 66.4
combination2 65.2 62.9 66.4 64.1
combination3 56.5 61.7 69.9 66.0
combination4 63.4 62.1 57.9 66.8

Table 6.3: Results of the authorship verification experiment. Within the ta-
ble, we name the combination of morphological tags, PoS bigrams, sen-
tence length, stoplist, repeating words and syntax2 as combination1, com-
bination of morphological tags, PoS, punctuation, sentence length, repeat-
ing words and syntax1 as combination2. Combination of punctuation, re-
peating words and syntax1 is denoted as combination3, and combination
of morphological tags, punctuation, sentence length, repeating words and
syntax2 as combination4.

However, the proposed syntactic features are contained in all the win-
ning combinations, which can be interpreted as a clear benefit of the syn-
tactic information provided by the SET parser to the authorship recognition
problem.

6.4 Grammar checking for Czech

In this section, we introduce two case studies of partial grammar check-
ing for Czech: new methods for punctuation correction, and detection of
subject-predicate agreement errors in Czech. Both of the studies exploit the
SET parser significantly.

6.4.1 Related work

There are two commercial systems for grammar checking of Czech: The
Grammar checker built into the Microsoft Office, developed by the Institute
of the Czech language [134], and the Grammaticon checker created by the
Lingea company [165]. Not much has been published about the principles

96

6. APPLICATIONS

these are based on; most of the available materials are Czech-only and have
rather advertising character. According to available information, both of the
tools are trying to describe negative (wrong) constructions and minimize
number of false alerts, i.e. prefer precision over recall significantly (frequent
false alerts bother users and make them stop using the tool). The available
tests of these tools [136, 6] (available only in Czech) indicate that the tools
are able to fix 25–35 percent of errors, with the number of false alerts 6–30
percent.

The Czech parsing community also contributed to the grammar check-
ing problem. Holan et al. [46] proposed using automatic dependency pars-
ing, however, authors conclude that the results have only a prototype char-
acter and much work is still needed to achieve practically usable product.
Jakubı́ček and Horák [58] reported on using the Synt parser [51], together
with a specialized grammar for Czech to detect punctuation in sentences.
They report over 80 percent precision and recall in punctuation detection
which means that the system fills in the commas into the text without com-
mas (rather than into a text with errors). 80 percent in detection roughly
means that every 5th comma is missing and every 5th is wrong. It is not
completely clear how the system would behave on real erroneous texts and
it is not possible to re-test, as the tool is not available at the moment.

6.4.2 Punctuation detection with the SET system

Within the SET parser, we have built a specialized grammar for punctuation
detection, together with an added special output function which prints a
comma before each word marked by a special phrasal token (we used <c>,
as illustrated in the examples). The grammar contains 10 rules for analysing
the most important patterns where a missing punctuation should be added,
that are used for building a reduced tree where the only important informa-
tion are the tokens marked with <c>.

This approach is (again) deliberately approximative, and follows the
more straightforward pattern matching idea of Grammaticon and Gram-
mar checker, rather than the full syntactic analysis introduced by Jakubı́ček
and Horák [58]. However, it is one of our future goals to combine the added
functionality with the full power of the standard SET grammar and com-
pare the results with the shallow approach.

Examples of a punctuation rule, a reduced syntactic tree for a sentence
with missing punctuation, and the resulting sentence with completed punc-
tuation, are given in Figures 6.5 and 6.6. As we can see, the “syntactic tree”
on the SET output contains practically no syntactic information, except the

97

6. APPLICATIONS

TMPL: $NEG $PREP $REL MARK 1 <c> HEAD 1
$REL(tag): k3.*y[RQ] k6.*y[RQ]
$PREP(tag): k7
$NEG(tag not): k7 k3.*y[RQ] k6.*y[RQ] k8
$NEG(word not): a * " tak přitom

Figure 6.5: One of the punctuation detection rules in SET, matching preposi-
tion and relative pronoun (k3.*y[RQ]) or adverb (k6.*y[RQ]), not preceded
by preposition or conjunction or relative pronoun/adverb.

Input: Nevı́ na jaký úřad má jı́t.

Neví

na

jaký úřad má jít .<c>

<sentence>

Output: Nevı́, na jaký úřad má jı́t.

Figure 6.6: Illustration of SET punctuation analysis – reduced tree and the
output sentence with completed punctuation. The rule from Figure 6.5 was
matched. Sentence: “Nevı́ na jaký úřad má jı́t.” (missing comma before “na”
– “(He) does not know what bureau to go in.”).

<c> guidelines for completing the sentence punctuation – rather than that,
the SET parser is used as an economical pattern matching engine.

Evaluation of the functionality was performed using the DESAM corpus
[137], using the same methodology as Jakubı́ček and Horák [58] – deleting
all commas from the input sentences and comparing their original with the
output of the parser.

The results are summarized in Table 6.4. We have distinguished a sam-
ple of first 500 sentences from the corpus, and the whole corpus of 50,000
sentences; also, we worked with both automatic and correct manual mor-
phological tagging. We can see that the results are very similar for all the
testing sets, and it can be concluded that errors in automatic tagging do not
influence punctuation detection significantly.

98

6. APPLICATIONS

The system shows very high, nearly 95 percent precision, which is very
good as it minimizes the number of false alerts. Recall is rather low and
means that the system is able to find only about 50 percent of errors. Speed
of the analysis was in all cases rather high – 313 sentences per second, on a
single Intel Xeon 2.66 GHz core.

We have performed a manual investigation of the differences between
the parser output and the correct punctuation, on first 150 sentences of the
testing data. This insight showed that many of the parser errors are actu-
ally not errors – in Czech, in some places the comma is not necessary but
writing it is not a mistake. From the missed commas, 21.4 percent were not
necessary according to the Czech writing rules (most frequent real errors
were in coordinations). From the false positives, 50 percent were actually
correctly placed commas. If we extrapolate these percentages to the whole
Desam testing set, we get the numbers as in the Extrapolation row.

Testing set Precision (%) Recall (%) F-measure (%)
Desam 500 94.7 47.3 63.1
Desam full 94.1 45.0 60.9
Desam 500 tagged 95.3 45.4 61.5
Extrapolation 97.1 56.8 71.6

Table 6.4: Results of punctuation detection within the SET system.

Our system outperforms the general reported results for Grammaticon
and Czech grammar checker, in terms of both precision and recall – number
of false alerts below 3% is very good compared to them, and also the recall
is slightly better. Jakubı́ček and Horák [58] reported better recall but lower
precision. We are confident that the precision is more important here, due
to the bothering character of false alerts, and any tool with precision lower
than 90–95 percent is not suitable for practical usage. Thanks to its results,
our tool is ready to be built into a grammar checking application.

6.4.3 Subject-predicate agreement with the SET system

Unlike the previous case study, detecting errors in subject-predicate agree-
ment in Czech sentences uses the full standard SET grammar. The rules
detecting subjects of clauses (labelling them as “subject” and adding their
dependency on the verb) were differentiated to correct subjects that agree
with the detected verb in gender and number, and the salient candidates
for subject that do not fulfill the agreement condition. The latter ones were

99

6. APPLICATIONS

TMPL: $MAINVERB $...* $LIKESUBJ AGREE 0 2 gn
MARK 2 DEP 0 PROB 602 LABEL subject

TMPL: $MAINVERB $...* $LIKESUBJ
MARK 2 DEP 0 PROB 601 LABEL subject-bad

MATCH $MAINVERB(tag) $MAINVERB(tag)
k5.*mF k5.*mF PROB 110

...

MATCH $LIKESUBJ(tag) $LIKESUBJ(tag)
k1.*c1 k1.*c1
k3.*c1.*xP k3.*c1.*xP

...

Figure 6.7: One of the SET subject rules, and its twin detecting bad subject-
predicate agreement.

labelled as “subject-bad”, for marking the difference. Example of the SET
rules is given in Figure 6.7, and the output trees are illustrated in Figure 6.8.

Again, the current rules within the SET grammar cover the most fre-
quent patterns. There are more complicated cases where the subject con-
sists of a complex coordination, error in which would not be detected by
our solution, in certain cases. However, according to the YAGNI principle
introduced in Section 2.5.5, we first implement and test the straightforward
approach, then identify the real drawbacks and then plan how to fix them,
rather than devising a complete solution at the beginning and suppose that

Psi
subject

hlasitě
adverb

štěkali .

<clause>

Psi
subject-bad

hlasitě
adverb

štěkaly .

<clause>

Figure 6.8: SET output tree for correct and incorrect version of sentence “Psi
hlasitě štěkali.” (“Dogs loudly barked.”).

100

6. APPLICATIONS

we are able to anticipate possible problems. Correctness of the YAGNI prin-
ciple showed very early in this case.

As there is no large available database of frequent Czech subject-predi-
cate agreement errors, we have decided to use a small set of sentences
from a Czech primary school dictation, where frequent errors were man-
ually identified and classified [170]. The set contained 26 sentences with 11
subject-predicate errors. Although the testing set is small, from Table 6.5
we can clearly see that there is a problem in automatic morphological tag-
ging. The difference in recall between the manual and automatic version is
immense, and the reason is that the subjects in the erroneous clauses were
tagged as non-subjects, e.g. as accusative instead of nominative (there is
very frequent nominative-accusative homonymy in Czech), and therefore
they were not recognized as subjects by the parser. This is probably caused
by the fact that the tagger (Desamb [171]), as it is usual for taggers, was
trained on correct texts and the non-agreement between subject and pred-
icate is so rare in these texts, that it rather chooses another option. Actu-
ally, most of the tagging errors resulted in syntactically correct Czech sen-
tences, sometimes even semantically correct, although not suitable in the
given context. This is a complex problem that will require a new approach
to Czech tagging.

sentences 26
errors 11
errors spotted (automatic tagging) 2 (18%)
false alerts 0
errors spotted after tagging correction 7 (64%)

Table 6.5: Results of punctuation detection within the SET system.

Another problem are sentences with unvoiced subject (usually present
in the previous sentence) – this was in 3 of the 11 sentences. Solution to this
problem requires quality anaphora resolution, and we did not attempt to
solve it within this case study.

Notable is the 100 percent precision that we have obtained in case of
both manual and automatic tagging – there was no false alert. Thanks to
this, although the recall is very low due to the automatic morphological
tagging, the system can be immediately employed in a grammar checker as
well.

101

6. APPLICATIONS

6.5 Collocation extraction

Within the work on word sketches, we are constantly interested in moni-
toring their quality. Two evaluations of the word sketch functionality were
performed, mainly with respect to their usability for a lexicographer or lan-
guage learner. This section describes a collaborative work with Adam Kil-
garriff, Miloš Jakubı́ček, Vı́t Baisa and Lucia Kocincová, with author’s con-
tribution ca. 50 percent.

6.5.1 Word sketch evaluation I

The first experiment took place in 2010, and word sketches for Dutch, En-
glish, Japanese and Slovene were evaluated [69]. A special web interface
was developed for this purpose and 42 sample headwords were randomly
selected from 3 different frequency ranges. Top 20 collocations for each of
the sample headwords were judged by two different annotators for being
good or bad, where the criterion for “good” was a positive answer to the
question “would the collocation have been suitable for including at this
entry in a dictionary like Oxford Collocation Dictionary?”. All of the an-
notators were native speakers of the respective languages, and all of them
were experts in lexicography with previous annotation experience, so they
were model users of the word sketch application and very competent to
perform the evaluation. Standard Sketch Engine corpora for the particular
languages were used, and standard processing pipelines for tokenization
and tagging [69].

The results of the evaluation are summarized in Table 6.6. We can see
that the inter-annotator agreement was not too high; it is natural in these
types of tasks – the actual feature that we wanted to evaluate can hardly be
specified more precisely without significant bias. On the other hand, it is a
practically defined task – collocation dictionaries do exist and are needed,
so the evaluation is meaningful. For the calculation of the final percentages,
we took only the cases into account where the annotators agreed with each
other. The results indicate that across languages, around 70 percent of the
top collocates are useful for recording in a dictionary, and therefore also
relevant for language learners. The Japanese result was even better, and the
details of Japanese evaluation were further discussed in [164].

By the method described above, we are able to assess precision but not
recall – in other words, we are unable to find out how many relevant col-
locations were missed from the top word sketch results. We aimed at ad-
dressing this issue in a recent experiment, where we built gold standard

102

6. APPLICATIONS

Language Total #collocations Agreed Good Bad % good
Dutch 782 501 332 169 66.3
English 794 519 367 152 70.7
Japanese 747 690 600 90 87.0
Slovene 800 550 391 159 71.1

Table 6.6: Results of the word sketch precision evaluation from 2010.

data for evaluation of collocation extraction. This second experiment was
performed for English and Czech.

6.5.2 Gold standard and word sketches from parsers

To build the gold standard data that would allow evaluation of both preci-
sion and recall, we needed to put together as many sources of collocations
as possible. Again, sample headwords were randomly selected from 3 dif-
ferent frequency ranges, this time the sample size was 105. For each of the
headwords, we have inspected all the available corpora for the language,
processed with all available processing pipelines, to gather 500 best collo-
cations (or 250 in case of medium frequency words, or 125 for low frequency
words). For English, we completed this set with data from available dictio-
naries of English [29, 146, 7], some of them in their online versions,4 and
WordNet [115].

For Czech, we were unable to find similarly rich and reliable sources
of collocations; to lower the risk of sparse data, we decided to add collo-
cations found by available parsers. For this purpose, SET, Synt [51], MST
Parser [110] and MaltParser [127] for Czech, both trained on the Prague
Dependency Treebank data, were used for creating word sketches, instead
of standard CQL sketch grammars. It has been also a significant opportu-
nity to compare the parsers on a practically defined task, and to test if full
parsing would help to gain better collocation lists in form of word sketches.

Then, this set of collocations was ordered randomly and evaluated man-
ually by the same method as above, for collocation appropriateness for a
dictionary. There were 3 annotators for each of the languages. Again, the
inter-annotator agreement was not too high, with respect to the fact that the
evaluation set was significantly unbalanced (“bad” was far more frequent

4. Oxford Dictionary of English at oxforddictionaries.com,
Collins English Dictionary at collinsdictionary.com,
and Merriam Webster at merriam-webster.com

103

6. APPLICATIONS

Figure 6.9: Distribution of collocations selected into the gold standard set,
ordered by score.

answer) – between 73 and 90 percent pairwise, Cohen’s kappa [26] below
0.5. However, we do not consider this a problem, as the task is to find a
reference set of good collocations, as complete as possible, the purpose of
which is to enable comparing corpora, processing tools and settings, rather
than to serve as an ideal output of a software tool (such ideal is, of course,
unreachable because of the limits in agreement among annotators).

We have selected the desired set by taking annotations where all the an-
notators but one answered “good”. All the rest is bad (or grey zone) which
does not have to be included in the experiments.

As for the completeness of the gold standard set, and its appropriate-
ness for estimating recall: We expected that with the length of the colloca-
tion lists, with decreasing scores and frequencies of the collocations, less
and less collocations will be annotated as good, and at the end of the 500–
250–125 lists, there will be no good collocations found. That would indicate
that if we evaluated longer lists, we would gain no more good collocations.
(Of course, we would still miss the collocations that are neither present in
the corpora, nor in the dictionaries. . . but then it is impossible for us to
find them, and it is a philosophical question if such non-occurring collo-
cations should be considered good at any circumstances – if they do not
occur in texts, who needs to know about them?) This expectation has been
confirmed to some extent, as illustrated in Figure 6.9 – at the end of the 500–
250–125 lists, only a very little number of good collocations is found which
indicates that we have probably missed some good collocations but their
number is very small.

As result, gold standard data set for the collocation extraction task was
created and made public, for both Czech and English, containing ca. 5,000

104

6. APPLICATIONS

Corpus Settings # collocs Prec (%) Rec (%) F-5 (%)
BNC frq/hl/10 1,122 58.5 12.3 12.7
Model frq/20/10 969 55.7 10.1 10.5
enTenTen12 frq/hl/10 1,456 52.7 14.4 14.8
enClueWeb09 frq/-/3 89,174 5.4 90.1 56.6
enTenTen12 frq/-/3 66,499 7.2 89.5 62.1
enTenTen08 frq/-/3 52,018 8.9 87.1 65.1
enTenTen12 frq/hi/5 23,113 17.8 77.3 68.5
enTenTen08 frq/hi/3 22,794 18.0 77.1 68.5
enClueWeb09 frq/hi/10 23,651 17.4 77.0 68.0

Table 6.7: Best results of English word sketch evaluation with gold stan-
dard: 3 best according to precision, 3 best according to recall and 3 best ac-
cording to F-5. Settings legend: sorting / max. no. collocates per headword
/ minimum frequency; frq: sorting collocations by frequency, hl: max. no.
collocates is 25/12/6, according to headword frequency band, hi: max. no.
collocates is 400/200/100, according to headword frequency band.

good collocations for each language. This dataset is suitable for extrinsic
evaluation of corpus data, as well as corpus processing tools such as tok-
enizers, taggers, parsers or sketch grammars.

6.5.3 Word sketch evaluation II – using the gold standard

We have tested a large number of corpora and settings such as minimum
frequency, collocation scoring function and maximum number of extracted
collocations per headword. Against the set of good collocations, we have
observed precision, recall and F-5 score which counts with both precision
and recall but discriminates precision in favour of recall. Recall is more im-
portant for this type of application where the automatic procedure prepares
data to be further processed by people, either lexicographers, or language
learners – omission of some desired results is worse than including non-
relevant results (or results in the grey zone). F-5 score is defined as

(1 + 25) ∗ precision ∗ recall
25 ∗ precision+ recall

Best results in terms of precision, recall and F5 score for both Czech and
English are summarized in Tables 6.7 and 6.8. According to the data, the

105

6. APPLICATIONS

Corpus Settings # collocs Prec (%) Rec (%) F-5 (%)
CZES MST log/hl/10 1,480 38.8 11.8 12.2
CZES Malt log/hl/10 1,478 38.0 11.6 11.9
CZES log/hl/10 1,447 36.8 11.0 11.3
czTenTen12 frq/-/3 58,462 7.2 86.7 60.9
SYN frq/-/3 52,000 7.9 85.1 62.0
CZES frq/-/3 32,419 11.0 73.4 60.3
czTenTen12 frq/-/10 40,654 9.9 82.9 64.6
SYN frq/-/10 34,667 11.1 79.1 64.0
CZES frq/-/3 32,419 11.0 73.4 60.3

Table 6.8: Best results of Czech word sketch evaluation with gold standard:
3 best according to precision, 3 best according to recall and 3 best according
to F-5. Settings legend: sorting / max. no. collocates per headword / mini-
mum frequency; frq: sorting collocations by frequency, log: sorting colloca-
tions by logDice, hl: max. no. collocates is 25/12/6, according to headword
frequency band.

system with appropriate settings is able to achieve about 90 percent recall
(however, with very low precisions and high numbers of extracted collo-
cations) and nearly 60 percent precision (40 for Czech). However, the best
precision results achieve only 11–14 percent recall, so we do not consider
them practically usable. The F-5 measure provides a good compromise be-
tween these two.

Also note that the best precision percentages are lower than in case of
the previous evaluation – the reason is that this new evaluation counts the
grey zone of annotators’ disagreement as bad collocations, whereas the pre-
vious evaluation took them out from the testing set.

For precision, corpora prepared by careful selection of sources score bet-
ter, such as the 100 million word British National Corpus [16] or Model cor-
pus.5 For Czech, the parsed corpora achieved best precision, but the SYN
part of the Czech National Corpus (2.2 billion words) [95] scored well on
recall and F-5 measure.

In both recall and F-5 measure, “the bigger, the better” roughly holds.
Big web corpora are the general winners according to the F-5 score – namely
enClueWeb, the 83 billion word English part of the ClueWeb crawl [141]; the

5. www.sketchengine.co.uk/documentation/wiki/Corpora/
NewModelCorpus

106

6. APPLICATIONS

Corpus Settings # collocs Prec (%) Rec (%) F-5 (%)
CZES MST log/hl/10 1,480 38.8 11.8 12.2
CZES Malt log/hl/10 1,478 38.0 11.6 11.9
CZES Synt log/hl/10 1,447 36.8 11.0 11.3
CZES log/hl/10 1,447 36.8 11.0 11.3
CZES SET log/hl/10 1,474 36.7 11.2 11.5
CZES frq/-/3 32,419 11.0 73.4 60.3
CZES SET frq/-/3 35,729 9.7 71.2 57.2
CZES MST frq/-/3 32,581 10.5 70.5 57.8
CZES Malt frq/-/3 32,471 10.5 70.2 57.6
CZES Synt frq/-/3 18,708 15.5 59.9 54.0

Table 6.9: Comparison of Czech parsers by collocation extraction – best re-
sults according to precision, and according to recall/F-5. Settings legend:
sorting / max. no. collocates per headword / minimum frequency; frq: sort-
ing collocations by frequency, log: sorting collocations by logDice, hl: max.
no. collocates is 25/12/6, according to headword frequency band.

enTenTen pair of corpora (3 and 13 billion words) and the Czech member
of the family, 5 billion word czTenTen [61]; and the CZES corpus of about
500 million words [55].

Another important (and surprising) observation is that the raw frequen-
cy is better than the logDice score for collocation salience estimations – it
outperformed the logDice practically in all important measures.

6.5.4 Parser comparison

We were interested in the influence of full parsing on the word sketch col-
locations, and in comparing Czech parsers using the collocation extraction
task. We have selected the CZES corpus (for its moderate size), processed it
by SET, Synt, MST Parser and MaltParser and compared the resulting word
sketches with the standard ones produced by the sketch grammar.

The results are summarized in Table 6.9. Rather surprisingly, they show
that the word sketches from full parsing are noticeably worse than word
sketches from sketch grammar. MST Parser and MaltParser achieved slight-
ly higher maximum precision, but at the cost of insufficient recall. In terms
of recall and F-5 score, sketch grammar outperformed all the full parsers.
Differences among SET, MaltParser and MST Parser are small, and Synt is
slightly worse.

107

6. APPLICATIONS

Parser PDT score (%) collocation extraction F-5 (%)
Sketch grammar N/A 60.3
Synt N/A 54.0
SET 56.0 57.2
MST Parser 84.7 57.8
MaltParser 85.8 57.6

Table 6.10: Comparison of unlabelled dependency precision score on
Prague Dependency Treebank testing section, and F-5 score for collocation
extraction.

These results substantially support our claim that specialized parsing
methods designed directly for particular applications are better than gen-
eral, mostly statistical parsers developed and tested according to the “tree-
bank philosophy”.

And again – although the MST Parser and MaltParser are considered
much better than Synt and SET, according to the scores against the Prague
Dependency Treebank data, there is no correlation with the results of col-
location extraction testing, as illustrated in Table 6.10. This is another evi-
dence supporting the SET design approach: Although its concept is much
simpler than in case of the other three, the differences on a particular prac-
tically oriented task are minimal.

We believe that the parsers can be modified in order to score better on
the collocation extraction task and outperform the shallow sketch grammar.
However, as we have illustrated on the Czech example, this is not the case
right now, even when using the best available parsers. We would like to
conduct more experiments with parsers and collocation extraction in the
future, namely to modify the parsers so that their output will better suit the
collocation extraction task. It is clear that such modifications will be much
easier in case of the SET parser with its transparent design and small rule-
based grammar, than in case of the statistical parsers trained on a treebank
and based on complex probabilistic models.

6.6 Terminology extraction

Terminology extraction using the Simple Maths formula and the sketch
grammar analysis has been described in Section 4.2.3. Up to now, it has been
implemented for 9 languages, in collaboration with native speakers of the

108

6. APPLICATIONS

respective languages: English, French, Japanese, Korean, Chinese, Spanish,
German, Portuguese and Russian.

6.6.1 Evaluations

The first 200 extraction results for the first 5 languages were manually eval-
uated by our partner – World Intellectual Property Organisation (WIPO)
– as the automatic extraction will help them create an international term
database (“termbase”) for texts of patents and other resources they have
access to. Only precision has been taken into account during the evalua-
tion, and relatively strict and very specialized criteria were set, where e.g.
each term candidate that contained word “method” or “device” was judged
as bad. The data for the extraction were small (500 thousand to 5 million
words) sample texts provided by WIPO. The results were as follows:

• English: 40%
• French: 17%
• Japanese: 20%
• Korean: 2%
• Chinese: 37%

which was good enough to win a contract, among (allegedly) 10 other can-
didate systems. Later, we modified the process in collaboration with the
partner to make the results better: especially we have involved blacklist of
unwanted words within the terms, and slightly modified the term gram-
mars. A second round of manual evaluation was performed, for 100 best
term candidates for each of the 5 languages. The results are summarized in
Table 6.11, together with the legend provided by WIPO.

We have also performed an initial independent evaluation for English,
using the GENIA corpus [74], in which all terms have been manually iden-
tified. Both keyword and term extraction was ran to obtain the top 2000
keywords and top 1000 multi-word terms. Terms manually annotated in
GENIA as well as terms extracted by our tool were normalized before com-
parison (lowercase, spaces and hyphens removed) and the most frequent
GENIA terms were looked up in the extraction results.

As for recall, 61 of the top 100, 275 of the top 500, and 489 of the top
1000 GENIA terms were found by the system. The terms from the top 100
that were not found did not consist of English words: most of them were
acronyms, e.g. “EGR1”, “STAT-6”. Concerning precision, 53 out of the top
100 term candidates extracted by the system were annotated as terms in the
GENIA corpus.

109

6. APPLICATIONS

Language Suitable Not suitable N/A
English 79% 5% 16%
Japanese 71% 29% 0%
French 70% 22% 8%
Chinese 51% 33% 16%
Korean 29% 68% 3%

Table 6.11: Results of the second round of manual evaluation of terminol-
ogy extraction. Suitable: the term candidate is a relevant term in the given
subject-field and is suitable for inclusion in the termbase. Not suitable: the
term candidate is not a valid term in the given subject-field and is not suit-
able for inclusion in the termbase. Cases of truncated terms for which the
correct full form was not extracted by the software were also scored as “not
suitable”. N/A: the term in question is truncated; however, the correct full
form is also extracted by the software and the term is included somewhere
in the list in the first 500 terms. As far as Korean is concerned, 37% of the
terms marked as “non suitable” were proper terms, however, not belonging
to the domain under investigation which indicates wrong selection of texts.

With respect to the fact that the system has not been tuned in any way
according to the GENIA data and annotation style, we consider it a very
promising result.

6.6.2 Bilingual term extraction

Within the WIPO project, we have also experimented with bilingual term
extraction – finding translation candidates for extracted terms, using bilin-
gual parallel data, aligned on sentences or sentence groups. Our approach
to this task was combining the bilingual parallel word sketch procedure, as
described in Section 4.2.2, with the term extraction machinery.

Firstly, we extract all the term candidates and mark them in the texts.
Then a stochastic dictionary of translation candidates is created by the same
method as described in Section 4.2.2, using the logDice co-occurrence score,
but with terms as the basic units rather than words. The result is a dictio-
nary with n best translations of each term.

This method has been evaluated manually by WIPO, for 4 language
pairs: English-French, English-Japanese, English-Korean and English-Chi-
nese. Again, small (500 thousands to 5 million words) sample texts pro-
vided by WIPO were used for creating the dictionaries. 100 random En-

110

6. APPLICATIONS

glish terms were given and the system returned 10 best translations from
the stochastic dictionary, for each of them, in each of the 4 languages. If the
correct translation was among the candidates, it was considered right, oth-
erwise wrong. The accuracy according to this methodology was as follows:

• French: 66%
• Japanese: 88%
• Korean: 35%
• Chinese: 79%

6.7 Automatic extraction of lexical semantic information

A lexical semantic resource Sholva is being developed by Marek Grác [37],
together with a method for automatic detection of semantic classes for un-
known words. The method is based on tracking collocations of the un-
known word, within given syntactic relations, and comparing it with the
semantic resource records – if one or more collocates of the unknown word
occur predominantly with a given semantic class, then the unknown word
is assigned to this class, too [37, pp. 73–81].

Experiments were conducted with Sholva and Czech WordNet [138],
and with the modifier relation obtained from output of SET, Synt and Czech
sketch grammar. Precision, recall and F-score of the automatic semantic
class assignment were measured. The SET parser in combination with the
Sholva semantic network produced the best results, with precision up to
80.1% (depending on other settings), recall up to 59.9% and best F-score
53.3%.

Later, the experiment was repeated using syntactic information from
MaltParser and MST Parser for Czech, none of which outperformed the
previous SET results. Again, an allegedly worse parser outperformed the
top state-of-the-art ones, in a practically oriented task.

The identified semantic classes were then manually checked and added
into the semantic network, raising its coverage on Czech nouns from 68.3%
to 83.1%. The process is currently used for further extensions of the seman-
tic network and for annotation of new semantic classes.

6.8 Valency frame induction

Lexicons of semantic valencies have been always considered crucial for nat-
ural language understanding – this is why big projects like FrameNet [5] or
VerbaLex [44] were introduced, aimed at recording the semantic valency

111

6. APPLICATIONS

Figure 6.10: Correspondence between manual VerbaLex verb frame and
LDA automatic verb frame. “člověk, rodič, žena, ...” (“man, parent, woman,
...”) correspond to “person:1”, “pivo, alkohol, jı́dlo, ...” (“beer, alcohol,
food, ...”) correspond to “food:1”.

information for individual words. Such resources have been criticised by
empiric linguists for being based on introspection rather than corpus data.
Also, they usually lack coverage and are expensive to build.

A novel method is in development by Jiřı́ Materna which enables au-
tomatic induction of the word frames from corpus data, based on latent
dirichlet allocation (LDA) [106]. The method has been partly evaluated for
English, with promising results [106, 105]. A demo application has been
created which provides a web interface to the available automatic valency
lexicons.6

The LDA method requires parsed data on the input, in form of word
tuples for the confident instances of the valency frames. For English, the
Stanford parser was used [75], for Czech, it was the SET parser described
in Chapter 5. For this purpose, a special option to the SET parser has been
added for output suitable for this application. Although the Czech results
have not been evaluated yet, the frames generally seem to be correct and
consistent with the valency information provided by manually created Ver-
baLex lexicon, as illustrated in Figure 6.10.

6. nlp.fi.muni.cz/projekty/lda-frames/view_frames.psp

112

6. APPLICATIONS

6.9 Czech phrase declension

Synthesis of texts in Czech is, thanks to the rich morphology and analytical
character of the language, relatively complex task. However, it is needed
by many subsequent applications, some of them of general use: generating
user-friendly reports from databases or other formal records, transforma-
tion of sentences needed e.g. by the textual entailment application [126],
localization of interfaces. . .

One of the necessary assumptions for correct sentence generation in
Czech is proper declension of noun and prepositional phrases. This task
has been addressed by Zuzana Nevěřilová [125] in context of the textual
entailment application development mentioned above. She shows that for
complex phrases, information from syntactic analysis is needed for detec-
tion of the phrase head, as declension of the words before and after the
syntactic head works differently. The analysis by the SET parser was used
for this task – no special additions were needed, as the head of a phrase is
always the top word in the dependency tree for the phrase.

Manual evaluation of the phrase declension application was performed
on a sample of 286 phrases [125], showing 90.6% accuracy. Based on this
application, a more complex tool for generating Czech sentences based on
formal JSON encoding was designed. Both of the applications have corre-
sponding web interfaces.7

6.10 Anaphora resolution

Anaphora resolution for Czech is addressed by 3 different systems [132, 99,
131]. The accuracy of these systems is evaluated against anaphora manual
annotation contained in the so called tectogrammatical layer of the Prague
Dependency Treebank. The overall accuracy of all the systems seems to
be around, or slightly above 40 percent, for all three systems. However,
the available evaluations seem to test slightly different variants of the task
(problems in evaluation are discussed in [132]) and the results are probably
not directly comparable.

The task is usually solved in two steps:

• finding the anaphoric expressions and their possible antecedents (so
called markables)
• resolving the coreference of markables

7. nlp.fi.muni.cz/projekty/declension
nlp.fi.muni.cz/projekty/ner/generate

113

6. APPLICATIONS

For the first step, syntactic analysis is needed, as the markables form
noun phrases or similar syntactic units – adjective phrases, clauses or sen-
tences and sentence groups. One of the tools, Saara designed by Václav
Němčı́k, is a framework that allows running several universal anaphora
resolution algorithms [132]. It uses SET as its primary and default source
of syntactic information, although processing pipeline for the Synt parser
has also been implemented. A web version of this application, accepting
Czech free text, and with Saara configured to resolve anaphora for personal
pronouns, is freely available online.8

Recently, the development of yet another anaphora resolution applica-
tion was started by Zuzana Nevěřilová, because of dissatisfaction with the
available tools, Aara.9 This tool is also based upon the syntactic information
from the SET parser.

6.11 Conclusions

In this chapter, we have introduced the particular usages of the tools pre-
sented in the previous chapters. Where available, we have provided evalu-
ations of accuracy, so that other tools, possibly exploiting different syntactic
processing, can be compared with our results.

In some cases (e.g. noun phrase declension), it is relatively straightfor-
ward to replace the used parser with another one, although there are tech-
nical complications. In other cases, e.g. grammar checking or extraction of
facts, our methods are tailored to the processing chain of the SET parser,
and replacing it with another syntactic tool would be very complicated and
only approximative, due to different character of the output information.

There are several other projects that we have not described in detail,
aimed at applying natural language parsing to practical problems, where
our input was rather limited, or the research is in an early stage yet, namely:

• morphological disambiguation for Czech within the Synt parser, re-
ported in [59]
• automatic theme-rheme identification for Czech [139] exploiting the

SET parser
• intrinsic corpus evaluation using the SET parser [4]
• translation of Czech sentences to formulae in transparent intensional

logic, using the Synt parser [53, 89]

8. nlp.fi.muni.cz/projekty/anaphora_resolution/saara/demo/
9. So far, only a web demo is available:
nlp.fi.muni.cz/projekty/watsonson/aara

114

6. APPLICATIONS

• question answering system for Czech, based on the same principle
as the extraction of facts introduced in Section 6.1
• syntactic information retrieval system for Czech, based on the same

principle

The variety of applications which use the syntactic analysis designed ac-
cording to principles introduced in Section 2.5.5 and the SET parser in par-
ticular, confirms that our strategy, aimed at developing natural language
parsing for real-world applications, is correct. According to the state of the
art evaluation methodology, both of the parsing methods introduced in this
work are substantially worse than the competition winners. In spite of that,
they are much more usable and their results improve (or even make pos-
sible) functionality of useful applications. The SET parser is used in more
practical applications than any other parser of Czech, including the sup-
posedly best ones, and the results of an application based comparison show
that its results are not significantly worse.

6.11.1 Note on parsing evaluation methodology

As we have shown in case of collocation extraction, accuracy according to
the state of the art methodology does not correlate with the usability for a
particular application. This result is consistent with previously cited studies
[118, 68]. Together, they reveal that the state of the art evaluation method-
ology is obsolete and leads to harmful effects – instead of being useful for
applications, syntactic analysis research aims at mimicking the testing data
that have nothing in common with the needs of real applications.

We propose changing this methodology. Automatic syntactic analysis
should not serve just for itself but to improve the following applications –
and the evaluation of parsing should respect this fact. We propose that the
evaluation of natural language parsers against treebanks is abandoned and
replaced by extrinsic evaluation of the applications exploiting the parsers,
in the same way as we performed it for collocation extraction in Section
6.5.4, and as reported in [118] and [68].

For the same reason, the natural language parsers should be developed
primarily for the particular applications, not as general tools. Emphasis
should be put on developing a suitable representation of the syntactic in-
formation needed (which is relative to each particular application), besides
the parsing precision – as we have shown earlier, the sentence trees are far
from being universal syntactic representation suitable for all applications.
The very specific tree representations created according to treebank anno-

115

6. APPLICATIONS

tation manuals are important for the linguistic theory but not for usage of
syntactic information within applications.

116

Chapter 7

Conclusions

This work describes an application oriented approach to automatic natural
language syntactic analysis. We have analyzed the state of the art method-
ology and identified problems leading to low usage of automatic syntactic
analysis, despite large amount of work that has been done in this domain.

In Section 2.5, we have criticized evaluations of natural language parsers
by comparing their output with manually annotated treebanks, and ex-
plained how this evaluation methodology leads to development of parsers
unusable in practice. We have proposed an alternative methodology based
on well known principles of software engineering where simplicity in de-
sign is the crucial key to usability and flexibility of the system. Usage of
the parsing systems, and their flexibility in adding new procedures and
output types, are necessary conditions for determining next meaningful re-
search directions and moving the whole natural language processing field
forward.

The next chapters describe our original research within the scope of
the new approach. Chapter 3 introduces bushbank, an alternative format
of syntactic annotation which overcomes some of the most painful prob-
lems of treebanks. Namely, it allows ambiguity in syntactic annotations and
distinguishes between straightforward and complicated syntactic phenom-
ena, as perceived by human beings. The particular implementation of the
formalism is application-oriented – we aimed at recording syntactic phe-
nomena directly usable by applications, and avoiding technical and non-
intuitive annotations forced by the treebank formalisms. Last but not least,
we have described the annotation process which is 10 times faster when
compared to treebank annotation. According to the principles from Section
2.5.5, we have emphasized simplicity in all aspects of the annotation de-
sign – the guidelines for annotators are smaller by 2 orders of magnitude
than guidelines for treebanks, with competitive inter-annotator agreement,
and the annotation is easily readable by people not educated in theoretical
linguistics.

117

7. CONCLUSIONS

The following chapter describes word sketches, a corpus-based syntac-
tic engine for collocation extraction originally introduced by Pavel Rychlý
and Adam Kilgarriff. We have described our work on word sketches lead-
ing to new applications of the formalism – collocation extraction for multi-
words, bilingual collocation extraction, and terminology extraction. Chap-
ter 5 introduces a new full parsing system SET based on pattern matching
and a set of manually written rules. The rule format provides very eco-
nomic, easy to maintain and readable description of syntactic phenomena.

Chapter 6 demonstrates the usability and flexibility of the proposed
parsing engines, by describing a wide variety of NLP applications where
the tools have been used. Evaluations of these applications show that de-
spite their deliberate simplicity, the analysers are competitive with the state
of the art tools, concerning the accuracy of the applications. Regarding us-
ability and flexibility, measured by the number of applications, they have
already overtaken all the current parsers for Czech.

We have constrasted evaluations based on applications and on bush-
bank, with the state of the art evaluation, which showed that they do not
correlate well. This clearly indicates that the current methodology based on
treebank evaluations does not measure the usefulness of the parsers with
regard to practical applications.

The main message of this work can be summarized as: “Let’s base natu-
ral language syntactic processing purely on needs of practical applications
that demand it, not the artificial syntactic descriptions contained in tree-
banks.”

We have provided evidence that the state of the art evaluation method-
ology is counterproductive, proposed new approach, and described results
proving that the approach is meaningful. Of course, there is still much work
to be done in the future but we believe that the ideas described in this thesis
will contribute to faster and more intelligent natural language processing
development.

118

Bibliography

[1] Steven Abney. Part-of-speech tagging and partial parsing. Corpus-
Based Methods in Language and Speech Processing, 2:118–136, 1997.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information
retrieval. ACM press New York, 1999.

[3] Vı́t Baisa and Vojtěch Kovář. Information extraction for Czech based
on syntactic analysis. In Proceedings of the 5th Language & Tech-
nology Conference, pages 466–470, Poznań, Poland, 2011. Funcacja
Universytetu im. A. Mickiewicza.

[4] Vı́t Baisa and Vı́t Suchomel. Intrinsic methods for comparison of cor-
pora. In Proceedings of Seventh Workshop on Recent Advances in
Slavonic Natural Language Processing, pages 51–58, Brno, 2013. Tri-
bun EU.

[5] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley
Framenet project. In Proceedings of the 17th international conference
on Computational linguistics – Volume 1, pages 86–90. Association
for Computational Linguistics, 1998.

[6] Dalibor Behún. Kontrola české gramatiky pro MS Office - konec
korektorů v Čechách?, 2005.
interval.cz/clanky/kontrola-ceske-gramatiky-pro-\
ms-office-konec-korektoru-v-cechach.

[7] Morton Benson, Evelyn Benson, and Robert Ilson. The BBI combina-
tory dictionary of English, 3rd edition. John Benjamins, Amsterdam,
Philadelphia, 1986.

[8] Iveta Beranová. Tvorba syntaktických pravidel pro detekci frázı́
v rámci analyzátoru SET. Bachelor thesis, Masaryk University, 2013.
is.muni.cz/th/382676/ff_b.

119

BIBLIOGRAPHY

[9] Ann Bies, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria
Tredinnick, Grace Kim, Mary A. Marcinkiewicz, and Britta Schas-
berger. Bracketing guidelines for treebank II style Penn treebank
project, 1995.
languagelog.ldc.upenn.edu/myl/PennTreebank1995.pdf.

[10] Joan Bresnan. Lexical-functional syntax. Blackwell, 2001.

[11] Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, and Andrew
Ng. Data-intensive question answering. In Proceedings of the Tenth
Text REtrieval Conference (TREC), pages 393–400, Gaithersburg, MD,
USA, 2001. Department of Commerce, National Institute of Standards
and Technology.

[12] Ted Briscoe and John Carroll. Robust accurate statistical annotation
of general text. In Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC 2002), pages 1499–1504,
Las Palmas, Gran Canaria, 2002. European Language Resources As-
sociation.

[13] Ted Briscoe, John Carroll, and Rebecca Watson. The second release
of the RASP system. In Proceedings of the COLING/ACL on Inter-
active presentation sessions, pages 77–80. Association for Computa-
tional Linguistics, 2006.

[14] Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multi-
lingual dependency parsing. In Proceedings of the Tenth Conference
on Computational Natural Language Learning, pages 149–164. Asso-
ciation for Computational Linguistics, 2006.

[15] Aleksander Buczyński and Adam Przepiórkowski. Spejd: A shallow
processing and morphological disambiguation tool. In Human Lan-
guage Technology. Challenges of the Information Society, pages 131–
141. Springer, Berlin, 2009.

[16] Lou Burnard. Users Reference Guide British National Corpus Version
1.0. Oxford University Computing Services, UK, 1995.

[17] Jean Carletta. Assessing agreement on classification tasks: The kappa
statistic. Computational linguistics, 22(2):249–254, 1996.

[18] Jean Carletta, Stefan Evert, Ulrich Heid, and Jonathan Kilgour. The
NITE XML toolkit: data model and query language. Language re-
sources and evaluation, 39(4):313–334, 2005.

120

BIBLIOGRAPHY

[19] John Carroll. Parsing and real-world applications. In Proceedings of
Text, Speech and Dialogue, 13th International Conference, TSD 2010,
Lecture Notes in Computer Science, pages 3–5, Berlin, 2010. Springer.

[20] Eugene Charniak. A maximum-entropy-inspired parser. In Proceed-
ings of the 1st North American chapter of the Association for Com-
putational Linguistics conference, pages 132–139. Morgan Kaufmann
Publishers Inc., 2000.

[21] Carole E. Chaski. The computational-linguistic approach to forensic
authorship attribution. In Law and Language: Theory and Society,
pages 119–144, Düsseldorf, 2008. Düsseldorf University Press.

[22] Zhiyi Chi. Statistical properties of probabilistic context-free gram-
mars. Computational Linguistics, 25(1):131–160, 1999.

[23] Noam Chomsky. Syntactic structures. Janua linguarum: Series minor.
Mouton, 1957.

[24] Stephen Clark and James R. Curran. Wide-coverage efficient statis-
tical parsing with CCG and log-linear models. Computational Lin-
guistics, 33(4):493–552, 2007.

[25] William F. Clocksin and Christopher S. Mellish. Programming in Pro-
log. Second edition. Springer, 1984.

[26] Jacob Cohen. A coefficient of agreement for nominal scales. Educa-
tional and psychological measurement, 20(1):37–46, 1960.

[27] Michael Collins. Head-driven statistical models for natural language
parsing. Computational linguistics, 29(4):589–637, 2003.

[28] Michael Collins, Lance Ramshaw, Jan Hajič, and Christoph Tillmann.
A statistical parser for Czech. In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics, pages 505–512.
Association for Computational Linguistics, 1999.

[29] Jonathan Crowther, Sheila Dignen, and Diana Lea. Oxford Colloca-
tions Dictionary for Students of English. Oxford University Press,
2002.

[30] Bojan Djordjevic, James R. Curran, and Stephen Clark. Improving
the efficiency of a wide-coverage CCG parser. In Proceedings of the
10th International Conference on Parsing Technologies, pages 39–47.
Association for Computational Linguistics, 2007.

121

BIBLIOGRAPHY

[31] Afsaneh Fazly, Paul Cook, and Suzanne Stevenson. Unsupervised
type and token identification of idiomatic expressions. Computa-
tional Linguistics, 35(1):61–103, 2009.

[32] Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik. Statistical
methods for rates and proportions. John Wiley & Sons, 2013.

[33] Richard P. Gabriel. Lisp: Good news, bad news, how to win big. AI
Expert, 6:30–39, 1991.

[34] Richard P. Gabriel. Is worse really better? Journal of Object-Oriented
Programming (JOOP), 5(4):501–538, 1992.

[35] Marek Grác, Miloš Jakubı́ček, and Vojtěch Kovář. Through low-cost
annotation to reliable parsing evaluation. In PACLIC 24 Proceedings
of the 24th Pacific Asia Conference on Language, Information and
Computation, pages 555–562, Sendai, Japan, 2010. Tohoku University.

[36] Ralph Grishman, Catherine Macleod, and John Sterling. Evaluating
parsing strategies using standardized parse files. In Proceedings of
the third conference on Applied natural language processing, pages
156–161. Association for Computational Linguistics, 1992.

[37] Marek Grác. Rapid Development of Language Resources. PhD thesis,
Masaryk University, 2013.

[38] Jan Hajič. Complex corpus annotation: The Prague dependency tree-
bank. Insight into the Slovak and Czech Corpus Linguistics, page 54,
2006.

[39] Jan Hajič, Jan Raab, Miroslav Spousta, et al. Semi-supervised train-
ing for the averaged perceptron POS tagger. In Proceedings of the
12th Conference of the European Chapter of the Association for Com-
putational Linguistics, pages 763–771. Association for Computational
Linguistics, 2009.

[40] Eva Hajičová, Jan Hajič, Barbora Hladká, Martin Holub, Petr Pajas,
Veronika Řeznı́čková, and Petr Sgall. The current status of the Prague
dependency treebank. In Proceedings of Text, Speech and Dialogue,
4th International Conference, volume 2166 of Lecture Notes in Com-
puter Science, pages 11–20, Berlin, 2001. Springer.

122

BIBLIOGRAPHY

[41] Jan Hajič. Building a syntactically annotated corpus: The Prague De-
pendency Treebank. In Issues of Valency and Meaning, pages 106–
132, Prague, 1998. Karolinum.

[42] Jan Hajič, Jarmila Panevová, Eva Buráňová, Zdeňka Urešová, Alla
Bémová, Jan Štěpánek, Petr Pajas, and Jiřı́ Kárnı́k. Annotations at
analytical level: Instructions for annotators, 2005. ufal.mff.cuni.
cz/pdt2.0/doc/manuals/en/a-layer/pdf/a-man-en.pdf.

[43] Ondřej Herman and Vojtěch Kovář. Methods for detection of word
usage over time. In Proceedings of Seventh Workshop on Recent Ad-
vances in Slavonic Natural Language Processing, pages 79–85, Brno,
2013. Tribun EU.

[44] Dana Hlaváčková and Aleš Horák. VerbaLex - new comprehensive
lexicon of verb valencies for Czech. In Computer Treatment of Slavic
and East European Languages, pages 107–115, Bratislava, Slovakia,
2006. Slovenský národný korpus.

[45] Jerry R. Hobbs. Discourse and inference: Magnum opus in progress,
2014. www.isi.edu/˜hobbs/disinf-tc.html.

[46] Tomáš Holan, Vladislav Kuboň, and Martin Plátek. A prototype of a
grammar checker for Czech. In Proceedings of the 5th conference on
Applied natural language processing, pages 147–154. Association for
Computational Linguistics, 1997.

[47] Tomáš Holan. Genetické učenı́ závislostnı́ch analyzátorů. In Sbornı́k
semináře ITAT 2005, pages 47–54. UPJŠ, Košice, 2005.

[48] Tomáš Holan and Zdeněk Žabokrtský. Combining Czech depen-
dency parsers. In Proceedings of Text, Speech and Dialogue, 9th In-
ternational Conference, volume 4188 of Lecture Notes in Computer
Science, pages 95–102, Berlin, 2006. Springer.

[49] Charles Hollingsworth. Using dependency-based annotations for au-
thorship identification. In Proceedings of Text, Speech and Dialogue,
15th International Conference, volume 7499 of Lecture Notes in Com-
puter Science, pages 314–319, Berlin, 2012. Springer.

[50] Aleš Horák. The Normal Translation Algorithm in Transparent Inten-
sional Logic for Czech. PhD thesis, Masaryk University, 2002.

123

BIBLIOGRAPHY

[51] Aleš Horák. Computer Processing of Czech Syntax and Semantics.
Librix.eu, Brno, Czech Republic, 2008.

[52] Aleš Horák, Tomáš Holan, Vladimı́r Kadlec, and Vojtěch Kovář. De-
pendency and phrasal parsers of the Czech language: A comparison.
In Proceedings of Text, Speech and Dialogue, 10th International Con-
ference, volume 4629 of Lecture Notes in Computer Science, pages
76–84, Berlin, 2007. Springer.

[53] Aleš Horák, Miloš Jakubı́ček, and Vojtěch Kovář. Analyzing time-
related clauses in transparent intensional logic. In Proceedings of
Fifth Workshop on Recent Advances in Slavonic Natural Language
Processing, pages 3–9, Brno, 2011. Tribun EU.

[54] Aleš Horák, Miloš Jakubı́ček, and Vojtěch Kovář. Linguistic logical
analysis of direct speech. In Proceedings of Sixth Workshop on Recent
Advances in Slavonic Natural Language Processing, pages 51–59,
Brno, 2012. Tribun EU.

[55] Aleš Horák, Pavel Rychlý, and Adam Kilgarriff. Czech Word Sketch
Relations with Full Syntax Parser, pages 101–112. Masaryk Univer-
sity, Brno, 2009.

[56] Richard A. Hudson. Word grammar. Blackwell Oxford, 1984.

[57] Abhilash Inumella, Adam Kilgarriff, and Vojtěch Kovář. Associating
collocations with dictionary senses. In Proceedings of 6th Biennial
Conference of the Asian Association for Lexicography, pages 102–
113, Bangkok, Thailand, 2009. Asian Association for Lexicography.

[58] Miloš Jakubı́ček and Aleš Horák. Punctuation detection with full syn-
tactic parsing. Research in Computing Science, Special issue: Natural
Language Processing and its Applications, 46:335–343, 2010.

[59] Miloš Jakubı́ček, Aleš Horák, and Vojtěch Kovář. Mining phrases
from syntactic analysis. In Proceedings of Text, Speech and Dialogue,
12th International Conference, volume 5729 of Lecture Notes in Com-
puter Science, pages 124–130, Berlin, 2009. Springer.

[60] Miloš Jakubı́ček. Rule-based parsing of morphologically rich lan-
guages. Dissertation proposal, Masaryk University, 2012.
is.muni.cz/th/172962/fi_r.

124

BIBLIOGRAPHY

[61] Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlý, and
Vı́t Suchomel. The TenTen corpus family. In 7th International Cor-
pus Linguistics Conference CL 2013, pages 125–127, Lancaster, 2013.
Lancaster University.

[62] Miloš Jakubı́ček and Vojtěch Kovář. CzechParl: Corpus of steno-
graphic protocols from Czech parliament. In Proceedings of Fourth
Workshop on Recent Advances in Slavonic Natural Language Pro-
cessing, pages 41–46, Brno, 2010. Masaryk University.

[63] Miloš Jakubı́ček and Vojtěch Kovář. Enhancing Czech parsing with
verb valency frames. In Computational Linguistics and Intelligent
Text Processing - 14th International Conference, CICLing 2013, vol-
ume 7816 of Lecture Notes in Computer Science, pages 282–293,
Greece, 2013. Springer.

[64] Miloš Jakubı́ček, Vojtěch Kovář, and Aleš Horák. Measuring coverage
of a valency lexicon using full syntactic analysis. In Proceedings of
Third Workshop on Recent Advances in Slavonic Natural Language
Processing, pages 75–79, Brno, 2009. Masaryk University.

[65] Miloš Jakubı́ček, Vojtěch Kovář, and Pavel Šmerk. Czech morpholog-
ical tagset revisited. In Proceedings of Fifth Workshop on Recent Ad-
vances in Slavonic Natural Language Processing, pages 29–42, Brno,
2011. Tribun EU.

[66] Miloš Jakubı́ček, Pavel Rychlý, Adam Kilgarriff, and Diana Mc-
Carthy. Fast syntactic searching in very large corpora for many lan-
guages. In PACLIC 24 Proceedings of the 24th Pacific Asia Con-
ference on Language, Information and Computation, pages 741–747,
Sendai, Japan, 2010. Tohoku University.

[67] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In
Handbook of formal languages, pages 69–123. Springer, 1997.

[68] Jason Katz-Brown, Slav Petrov, Ryan McDonald, Franz Och, David
Talbot, Hiroshi Ichikawa, Masakazu Seno, and Hideto Kazawa. Train-
ing a parser for machine translation reordering. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing,
pages 183–192. Association for Computational Linguistics, 2011.

[69] A. Kilgarriff, V. Kovář, S. Krek, I. Srdanović, and C. Tiberius. A quan-
titative evaluation of Word Sketches. In Proceedings of the XIV Eu-

125

BIBLIOGRAPHY

ralex International Congress, pages 372–379, Ljouwert, Netherlands,
2010. Fryske Akademy.

[70] Adam Kilgarriff. Simple maths for keywords. In Proceedings of the
Corpus Linguistics Conference, Liverpool, 2009. University of Liver-
pool.

[71] Adam Kilgarriff, Vojtěch Kovář, and Pavel Rychlý. Tickbox lexicogra-
phy. In eLexicography in the 21st century: New challenges, new ap-
plications, pages 411–418, Louvain la Neuve, Belgium, 2010. Presses
universitaires de Louvain.

[72] Adam Kilgarriff, Pavel Rychlý, Vojtěch Kovář, and Vı́t Baisa. Finding
multiwords of more than two words. In Proceedings of the 15th EU-
RALEX International Congress, pages 693–700, Oslo, 2012. University
of Oslo.

[73] Adam Kilgarriff, Pavel Rychlý, Pavel Smrž, and David Tugwell. The
Sketch Engine. Information Technology, 105:116–127, 2004.

[74] Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. GENIA
corpus – a semantically annotated corpus for bio-textmining. Bioin-
formatics, 19(suppl 1):i180–i182, 2003.

[75] Dan Klein and Christopher D. Manning. Fast exact inference with a
factored model for natural language parsing. In Advances in neural
information processing systems, pages 3–10. MIT Press, 2003.

[76] Graham Klyne, Jeremy J. Carroll, and Brian McBride. Resource de-
scription framework (RDF): Concepts and abstract syntax. W3C rec-
ommendation, 10, 2004.

[77] Lucia Kocincová. Využitı́ syntaktických analyzátorů pro zı́skávánı́
kolokacı́ v korpusech. Bachelor thesis, Masaryk University, 2013.
is.muni.cz/th/374080/fi_b.

[78] Miloslav Konopı́k and Ondřej Rohlı́k. Question answering for not
yet semantic web. In Proceedings of Text, Speech and Dialogue, 13th
International Conference, TSD 2010, Lecture Notes in Computer Sci-
ence, pages 125–132, Berlin, 2010. Springer.

[79] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Computa-
tional methods in authorship attribution. Journal of the American
Society for Information Science and Technology, 60(1):9–26, 2009.

126

BIBLIOGRAPHY

[80] Iztok Kosem, Vı́t Baisa, Vojtěch Kovář, and Adam Kilgarriff. User-
friendly interface of error/correction-annotated corpus for both
teachers and researchers. In Book of Abstracts LCR 2013, pages 82–84,
Bergen, 2013. University of Bergen.

[81] Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Syntactic analysis
as pattern matching: The SET parsing system. In Proceedings of 4th
Language & Technology Conference, pages 978–983, Poznań, Poland,
2009. Wydawnictwo Poznańskie.

[82] Vojtěch Kovář and Aleš Horák. Reducing the number of re-
sulting parsing trees for the Czech language using the beautified
chart method. In Proceedings of the 3rd Language & Technology
Conference, pages 433–437, Poznań, Poland, 2007. Wydawnictwo
Poznańskie.

[83] Vojtěch Kovář, Aleš Horák, and Vladimı́r Kadlec. New methods for
pruning and ordering of syntax parsing trees. In Proceedings of Text,
Speech and Dialogue, 11th International Conference, volume 5246
of Lecture Notes in Computer Science, pages 125–131, Berlin, 2008.
Springer.

[84] Vojtěch Kovář and Miloš Jakubı́ček. Test suite for the Czech parser
Synt. In Proceedings of Second Workshop on Recent Advances
in Slavonic Natural Language Processing, pages 63–70, Brno, 2008.
Masaryk University.

[85] Vojtěch Kovář and Miloš Jakubı́ček. Prague dependency treebank
annotation errors: A preliminary analysis. In Proceedings of Third
Workshop on Recent Advances in Slavonic Natural Language Pro-
cessing, pages 101–108, Brno, 2009. Masaryk University.

[86] Vojtěch Kovář. Corpus query system Bonito - recent development. In
Proceedings of First Workshop on Recent Advances in Slavonic Nat-
ural Language Processing, pages 71–76, Brno, 2007. Masaryk Univer-
sity.

[87] Vojtěch Kovář and Aleš Horák. Power networks dialogues - auto-
matic analysis and evaluation of a domain-specific text corpus. In
Proceedings of ELNET 2007, pages 30–37, Ostrava, 2007. Faculty of
Electrical Engineering and Computer Science, VŠB - Technical Uni-
versity of Ostrava.

127

BIBLIOGRAPHY

[88] Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Power networks di-
alogs - enhancing domain-specific text processing techniques and re-
sources. In Proceedings of ELNET 2008, pages 72–80, Ostrava, 2008.
Faculty of Electrical Engineering and Computer Science, VŠB - Tech-
nical University of Ostrava.

[89] Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. How to analyze nat-
ural language with transparent intensional logic? In Proceedings of
Fourth Workshop on Recent Advances in Slavonic Natural Language
Processing, pages 69–76, Brno, 2010. Masaryk University.

[90] Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Syntactic analy-
sis using finite patterns: A new parsing system for Czech. In Human
Language Technology. Challenges for Computer Science and Linguis-
tics, volume 6562 of Lecture Notes in Computer Science, pages 161–
171, Berlin, 2011. Springer.

[91] Vojtěch Kovář, Miloš Jakubı́ček, and Jan Bušta. Czech vulgarisms in
text corpora. In After Half a Century of Slavonic Natural Language
Processing, pages 141–145, Brno, 2009. Tribun EU.

[92] Vojtěch Kovář, Miloš Jakubı́ček, and Aleš Horák. Syntactic parser
SET, 2012. nlp.fi.muni.cz/projects/set.

[93] Vojtěch Kovář, Vladimı́r Kadlec, and Aleš Horák. Grammar devel-
opment for Czech syntactic parser with corpus-based techniques.
In Proceedings of Corpus Linguistic 2006, pages 159–165, Saint-
Petersburg, 2006. Saint-Petersburg State University.

[94] Vladislav Kuboň, Markéta Lopatková, Martin Plátek, and Patrice
Pognan. Segmentation of complex sentences. In Proceedings of Text,
Speech and Dialogue, 9th International Conference, volume 4188
of Lecture Notes in Computer Science, pages 151–158, Berlin, 2006.
Springer.

[95] Karel Kučera. The Czech National Corpus: principles, design, and
results. Literary and linguistic computing, 17(2):245–257, 2002.

[96] J. Richard Landis and Gary G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33(1):159–174, 1977.

[97] Dekang Lin. PRINCIPAR: An efficient, broad-coverage, principle-
based parser. In Proceedings of the 15th conference on Computa-

128

BIBLIOGRAPHY

tional linguistics – Volume 1, pages 482–488. Association for Compu-
tational Linguistics, 1994.

[98] Dekang Lin. Dependency-based evaluation of MINIPAR. In Tree-
banks: Building and using parsed corpora, pages 317–329. Springer,
Berlin, 2003.

[99] Nguy Giang Linh. Návrh souboru pravidel pro analýzu anafor
v českém jazyce. Master thesis, Charles University, 2006.

[100] Markéta Lopatková, Natalia Klyueva, and Petr Homola. Annotation
of sentence structure: capturing the relationship among clauses in
Czech sentences. In Proceedings of the Third Linguistic Annotation
Workshop, pages 74–81. Association for Computational Linguistics,
2009.

[101] Christopher D. Manning. Part-of-speech tagging from 97% to 100%:
Is it time for some linguistics? In Computational Linguistics and
Intelligent Text Processing - 12th International Conference, CICLing
2011, pages 171–189. Springer, Berlin, 2011.

[102] Christopher D. Manning and Hinrich Schütze. Foundations of statis-
tical natural language processing. MIT Press, 1999.

[103] Mitchell P. Marcus, Marry A. Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of English: The Penn Treebank.
Computational Linguistics, 19:313–330, 1993.

[104] James Martin. Rapid application development. Macmillan, 1991.

[105] Jiřı́ Materna. Building a thesaurus using LDA-Frames. In Proceedings
of Sixth Workshop on Recent Advances in Slavonic Natural Language
Processing, pages 97 –103, Brno, 2012. Tribun EU.

[106] Jiřı́ Materna. LDA-Frames: An unsupervised approach to generat-
ing semantic frames. In Computational Linguistics and Intelligent
Text Processing, 13th International Conference, CICLing 2012, vol-
ume 7181 of Lecture Notes in Computer Science, pages 376–387,
Berlin, 2012. Springer.

[107] Pavel Materna, Marie Dužı́, and Bjorn T. F. Jespersen. Procedural
Semantics for Hyperintensional Logic. Springer, Berlin, 2010.

129

BIBLIOGRAPHY

[108] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-
training for parsing. In Proceedings of the main conference on Hu-
man Language Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics, pages 152–159.
Association for Computational Linguistics, 2006.

[109] Ryan McDonald. Discriminative learning and spanning tree algo-
rithms for dependency parsing. PhD thesis, University of Pennsylva-
nia, 2006.

[110] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
projective dependency parsing using spanning tree algorithms. In
Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, Vancouver, BC,
Canada, 2005. Association for Computational Linguistics.

[111] Marek Medved’, Miloš Jakubı́ček, and Vojtěch Kovář. Towards tag-
gers and parsers for Slovak. In Proceedings of 6th Language & Tech-
nology Conference, pages 1–4, Poznań, Poland, 2013. Wydawnictwo
Poznańskie.

[112] Marek Medved’, Miloš Jakubı́ček, Vojtěch Kovář, and Václav Němčı́k.
Adaptation of Czech parsers for Slovak. In Proceedings of Sixth
Workshop on Recent Advances in Slavonic Natural Language Pro-
cessing, pages 23–30, Brno, 2012. Tribun EU.

[113] Marie Mikulová and Jan Štěpánek. Annotation procedure in build-
ing the Prague Czech-English dependency treebank. In Slovko 2009,
NLP, Corpus Linguistics, Corpus Based Grammar Research, pages
241–248, Bratislava, Slovakia, 2009. Slovenská akadémia vied.

[114] George A. Miller. The magical number seven, plus or minus two:
some limits on our capacity for processing information. Psychological
review, 63(2):81, 1956.

[115] George A. Miller. WordNet: a lexical database for English. Commu-
nications of the ACM, 38(11):39–41, 1995.

[116] Ruslan Mitkov. Anaphora resolution. Longman London, 2002.

[117] Yusuke Miyao, Alastair Butler, Kei Yoshimoto, and Jun’ichi Tsujii. A
modular architecture for the wide-coverage translation of natural lan-
guage texts into predicate logic formulas. In PACLIC 24 Proceedings

130

BIBLIOGRAPHY

of the 24th Pacific Asia Conference on Language, Information and
Computation, pages 481–488, Sendai, Japan, 2010. Tohoku University.

[118] Yusuke Miyao, Kenji Sagae, Rune Sætre, Takuya Matsuzaki, and
Jun’ichi Tsujii. Evaluating contributions of natural language parsers
to protein–protein interaction extraction. Bioinformatics, 25(3):394–
400, 2009.

[119] Jaroslav Moravec, Vojtěch Kovář, Jan Bušta, and Miloš Jakubı́ček.
OOCorr, 2010. nlp.fi.muni.cz/projects/oocorr.

[120] Andrea Moro and Roberto Navigli. Integrating syntactic and seman-
tic analysis into the open information extraction paradigm. In Pro-
ceedings of the Twenty-Third International Joint Conference on Arti-
ficial Intelligence, IJCAI’13, pages 2148–2154. AAAI Press, 2013.

[121] Eva Mráková and Radek Sedláček. From Czech morphology through
partial parsing to disambiguation. In Computational Linguistics and
Intelligent Text Processing - 11th International Conference, CICLing
2010, volume 6008 of Lecture Notes in Computer Science, pages 126–
135, Berlin, 2010. Springer.

[122] David Nadeau and Satoshi Sekine. A survey of named entity recogni-
tion and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[123] Tetsuji Nakagawa. Multilingual dependency parsing using global
features. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL, pages 952–956. Association for Computational Lin-
guistics, 2007.

[124] Zuzana Nevěřilová. Building evaluation dataset for textual entail-
ment in Czech. In Proceedings of Sixth Workshop on Recent Ad-
vances in Slavonic Natural Language Processing, pages 53–58, Brno,
2012. Tribun EU.

[125] Zuzana Nevěřilová. Declension of Czech noun phrases. In Actes
du 31e Colloque International sur le Lexique et la Grammaire, pages
134–138, České Budějovice, 2012. Université de Bohême du Sud à
České Budějovice (République tchèque).

[126] Zuzana Nevěřilová and Marek Grác. Common sense inference using
verb valency frames. In Proceedings of Text, Speech and Dialogue,
15th International Conference, volume 7499 of Lecture Notes in Com-
puter Science, pages 328–335, Berlin, 2012. Springer.

131

BIBLIOGRAPHY

[127] Joakim Nivre. Non-projective dependency parsing in expected linear
time. In Proceedings of the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 351–359. Association for
Computational Linguistics, 2009.

[128] Joakim Nivre, Johan Hall, and Jens Nilsson. MaltParser: A data-
driven parser-generator for dependency parsing. In Proceedings of
the 5th international conference on Language Resources and Evalua-
tion (LREC 2006), volume 6, Genoa, Italy, 2006. European Language
Resource Association, Paris.

[129] Joakim Nivre and Jens Nilsson. Pseudo-projective dependency pars-
ing. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 99–106. Association for Computa-
tional Linguistics, 2005.

[130] Václav Novák and Zdeněk Žabokrtský. Feature engineering in max-
imum spanning tree dependency parser. In Proceedings of Text,
Speech and Dialogue, 10th International Conference, volume 4629
of Lecture Notes in Computer Science, pages 92–98, Berlin, 2007.
Springer.

[131] Michal Novák and Zdeněk Žabokrtský. Resolving noun phrase coref-
erence in Czech. In Anaphora Processing and Applications, pages
24–34. Springer, Berlin, 2011.

[132] Václav Němčı́k. Saara: Anaphora resolution on free text in Czech.
In Proceedings of Sixth Workshop on Recent Advances in Slavonic
Natural Language Processing, pages 3–8, Brno, 2012. Tribun EU.

[133] Franz J. Och and Hermann Ney. Improved statistical alignment mod-
els. In Proceedings of the 38th Annual Meeting of the Association for
Computational Linguistics, pages 440–447. Association for Computa-
tional Linguistics, 2000.

[134] Karel Oliva, Vladimı́r Petkevič, and Microsoft s.r.o. Czech grammar
checker, 2005. office.microsoft.com/word.

[135] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank citation ranking: Bringing order to the web. Technical
Report 1999-66, Stanford InfoLab, November 1999.

132

BIBLIOGRAPHY

[136] Karel Pala. Pište dopisy konečně bez chyb – Český gramatický korek-
tor pro Microsoft Office. Computer, pages 13–14, 2005.

[137] Karel Pala, Pavel Rychlý, and Pavel Smrž. DESAM — annotated cor-
pus for Czech. In Proceedings of SOFSEM’97, pages 523–530, Berlin,
1997. Springer.

[138] Karel Pala and Pavel Smrž. Building Czech Wordnet. Romanian Jour-
nal of Information Science and Technology, 7:79–88, 2004.

[139] Karel Pala and Ondřej Svoboda. Semi-automatic theme-rheme iden-
tification. In Proceedings of Seventh Workshop on Recent Advances
in Slavonic Natural Language Processing, pages 39–48, Brno, 2013.
Tribun EU.

[140] Carl Pollard. Head-driven phrase structure grammar. University of
Chicago Press, 1994.

[141] Jan Pomikálek, Miloš Jakubı́ček, and Pavel Rychlý. Building a 70 bil-
lion word corpus of English from ClueWeb. In Proceedings of the
8th International Conference on Language Resources and Evaluation
(LREC 2012), pages 502–506. European Language Resources Associa-
tion, 2012.

[142] Martin Popel, David Mareček, Jan Štepánek, Daniel Zeman, and
Zdeněk Žabokrtský. Coordination structures in dependency tree-
banks. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 517–527, Sofia, Bulgaria, 2013.
Association for Computational Linguistics.

[143] Karl Popper. The logic of scientific discovery. Routledge, 1959.

[144] Adam Radziszewski and Marek Grác. Using low-cost annotation to
train a reliable Czech shallow parser. In Proceedings of Text, Speech
and Dialogue, 16th International Conference, volume 8082 of Lecture
Notes in Computer Science, pages 575–1156, Berlin, 2013. Springer.

[145] Adam Radziszewski and Maciej Piasecki. A preliminary noun phrase
chunker for Polish. In Intelligent Information Systems, pages 169–
180, Berlin, 2010. Springer.

[146] Michael Rundell. Macmillan Collocations Dictionary. Macmillan,
2010.

133

BIBLIOGRAPHY

[147] Pavel Rychlý and Pavel Smrž. Manatee, Bonito and Word Sketches
for Czech. In Proceedings of the Second International Conference
on Corpus Linguisitcs, pages 124–132, Saint-Petersburg, 2004. Saint-
Petersburg State University Press.

[148] Pavel Rychlý. A lexicographer-friendly association score. In Proceed-
ings of Second Workshop on Recent Advances in Slavonic Natural
Language Processing, pages 6–9, Brno, 2008. Masaryk University.

[149] Pavel Rychlý and Vojtěch Kovář. Displaying bidirectional text concor-
dances in KWIC format. In Proceedings of 5th Biennial Conference of
the Asian Association for Lexicography, pages 61–66, Madras, India,
2007. University of Madras.

[150] Jan Rygl and Aleš Horák. Authorship attribution: Comparison of
single-layer and double-layer machine learning. In Proceedings of
Text, Speech and Dialogue, 15th International Conference, volume
7499 of Lecture Notes in Computer Science, pages 282–289, Berlin,
2012. Springer.

[151] Jan Rygl and Aleš Horák. Similarity ranking as attribute for machine
learning approach to authorship identification. In Proceedings of the
8th International Conference on Language Resources and Evaluation
(LREC 2012), Istanbul, Turkey, 2012. European Language Resources
Association.

[152] Jan Rygl, Kristýna Zemková, and Vojtěch Kovář. Authorship verifi-
cation based on syntax features. In Proceedings of Sixth Workshop
on Recent Advances in Slavonic Natural Language Processing, pages
111–119, Brno, 2012. Tribun EU.

[153] Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and
Dan Flickinger. Multiword expressions: A pain in the neck for NLP.
In Computational Linguistics and Intelligent Text Processing, pages
1–15, Berlin, 2002. Springer.

[154] Geoffrey Sampson. A proposal for improving the measurement of
parse accuracy. International Journal of Corpus Linguistics, 5(01):53–
68, 2000.

[155] Geoffrey Sampson and Anna Babarczy. A test of the leaf-ancestor
metric for parse accuracy. Natural Language Engineering, 9(04):365–
380, 2003.

134

BIBLIOGRAPHY

[156] Geoffrey Sampson and Anna Babarczy. Definitional and human con-
straints on structural annotation of English. Natural Language Engi-
neering, 14(4):471–494, 2008.

[157] Petr Savický and Jaroslava Hlaváčová. Measures of word common-
ness. Journal of Quantitative Linguistics, 9(3):215–231, 2002.

[158] Helmut Schmid. Probabilistic part-of-speech tagging using decision
trees. In Proceedings of International Conference on New Methods in
Language Processing, volume 12, pages 44–49. Manchester, UK, 1994.

[159] Radek Sedláček and Pavel Smrž. A new Czech morphological anal-
yser ajka. In Proceedings of Text, Speech and Dialogue, 4th Interna-
tional Conference, volume 2166 of Lecture Notes in Computer Sci-
ence, pages 100–107, Berlin, 2001. Springer.

[160] Petr Sgall. Generativnı́ popis jazyka a česká deklinace (Generative
Description of the Language and the Czech Declension). Academia,
Prague, 1967.

[161] Stuart M. Shieber. Evidence against the context-freeness of natural
language. In The Formal Complexity of Natural Language, pages
320–334. Springer, Berlin, 1987.

[162] Arne Skjærholt. Influence of preprocessing on dependency syntax
annotation: speed and agreement. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with Discourse, pages
28–32. Association for Computational Linguistics, 2013.

[163] Vladimı́r Šmilauer. Novočeská skladba. SPN, 1969.

[164] Irena Srdanović, Naomi Ida, Chikako Shigemori Bučar, Adam Kil-
garriff, and Vojtěch Kovář. Japanese word sketches: Advances and
problems. Acta Linguistica Asiatica, 1(2):63–82, 2011.

[165] Lingea s.r.o. Grammaticon, 2003.
www.lingea.cz/grammaticon.htm.

[166] Mark Steedman and Jason Baldridge. Combinatory categorial gram-
mar. In Non-Transformational Syntax, pages 181–224. Blackwell,
2011.

[167] Ingo Steinwart and Andreas Christmann. Support vector machines.
Springer, 2008.

135

BIBLIOGRAPHY

[168] Asher Stern and Ido Dagan. The BIUTEE research platform for
transformation-based textual entailment recognition. Linguistic Is-
sues in Language Technology, 9:1–26, 2013.

[169] Lucien Tesnière. Élements de syntaxe structurale. C. Klincksieck,
1959.

[170] Barbora Trifanová. Analýza chyb v diktátech žáků po absolvovánı́ 1.
stupně ZŠ. Bachelor thesis, Masaryk University, 2014.
is.muni.cz/th/382965/ff_b.

[171] Pavel Šmerk. Unsupervised learning of rules for morphological dis-
ambiguation. In Proceedings of Text, Speech and Dialogue, 7th In-
ternational Conference, volume 3206 of Lecture Notes in Computer
Science, pages 211–216, Berlin, 2004. Springer.

[172] Eva Žáčková. Parciálnı́ syntaktická analýza (češtiny). PhD thesis,
Masaryk University, 2002.

[173] Yorick Wilks and Mark Stevenson. Sense tagging: Semantic tagging
with a lexicon. In Proceedings of the SIGLEX Workshop Tagging Text
with Lexical Semantics: What, why and how, pages 47–51. Associa-
tion for Computational Linguistics, 1997.

[174] David Yarowsky. Unsupervised word sense disambiguation rivaling
supervised methods. In Proceedings of the 33rd annual meeting on
Association for Computational Linguistics, pages 189–196. Associa-
tion for Computational Linguistics, 1995.

[175] Daniel Zeman. Neprojektivita v Pražském závislostnı́m korpusu
(PDT). Technical Report TR-2004-22, ÚFAL/CKL MFF UK, Prague,
2004.

[176] Daniel Zeman. Parsing with a Statistical Dependency model. PhD
thesis, Charles University, MFF, 2004.

136

Appendix A

Czech bushbank manual for annotators

NP
• NP je fráze, jejı́ž hlavou je podstatné či přı́davné jméno, zájmeno, čı́s-

lovka, předložka nebo zkratka (k[12347A]) včetně svých bezpředložko-
vých rozvitı́

◦ např. zájmena ”který”, ”jaký”, ”se”, ”si” jsou NP
◦ ”domnı́vám se” – NP je ”se”
◦ ”vymı́nil si” – NP je ”si”
◦ ”ceny tepla by mohly být i nižšı́” – NP jsou ”ceny tepla” a ”nižšı́”
◦ ”opatřenı́ by nutilo ke změně chovánı́ spotřebitele paliv, kteřı́ ještě

stále investujı́...” – NP jsou ”opatřenı́”, ”ke změně chovánı́ spotře-
bitele paliv”, ”kteřı́”
◦ ”musı́me určit, za jakých podmı́nek to uděláme” – NP jsou ”za ja-

kých podmı́nek”, ”to”

• do NP patřı́ předložka včetně ”jako”, ”než”, ”okolo”, ”kolem” POUZE
NA ZAČÁTKU, tzn. každá NP je oddělena předložkou

◦ ”jako tvrdé politické rozhodnutı́ vlády” je NP
◦ ”mnohem vyššı́ než náklady v České republice” – ”než náklady” je

NP, ”v České republice” je NP
◦ ”s nimiž se čtenáři setkali jako spotřebitelé” – ”jako spotřebitelé” je

NP
◦ ”s návratnostı́ do 10 let” – NP jsou ”s návratnostı́” a ”do 10 let”

• ALE pokud po ”jako”, ”než” bezprostředně nenásleduje NP, nenı́ sou-
částı́ NP

◦ ”jako byla cena rodinného domku” – NP je pouze ”cena rodinného
domku”

• do NP nepatřı́ spojky (”aby, že, protože, jak...”) spojujı́cı́ jednotlivé
věty
• NP může obsahovat spojku pouze uprostřed; a pouze takovou, která

souřadně spojuje přı́vlastky

137

A. CZECH BUSHBANK MANUAL FOR ANNOTATORS

◦ ”černá a bı́lá kočka” je NP
◦ ”ministerstvo školstvı́ a mládeže” je NP

• vı́ceslovné předložky rozdělujeme:

◦ ”se zřetelem na správnı́ řı́zenı́” – NP jsou ”se zřetelem” a ”na správ-
nı́ řı́zenı́”
◦ ”vzhledem ke komplikacı́m” – NP jsou ”vzhledem” a ”ke komp-

likacı́m”

• a s jednoslovnými nevlastnı́mi předložkami zacházı́me jako s předlož-
kami vlastnı́mi:

◦ např. ”blı́zko”, ”doprostřed”, ”dovnitř”, ”nedaleko”, ”oproti”, ”po-
blı́ž”, ”uprostřed”, ”vprostřed”, ”zprostřed” – tedy nevlastnı́ před-
ložky jednoslovné vzniklé z mı́stnı́ch přı́slovcı́
◦ ”jsou poblı́ž nás” – NP je ”poblı́ž nás”
◦ ”uprostřed náměstı́” je NP

• v přı́padě, že jsou dvě NP vedle sebe bez předložky, musı́me je rozdělit,
pokud sémanticky nepatřı́ k sobě, čili druhá nenı́ rozvitı́m prvnı́:

◦ ”dala mi to” – NP jsou ”mi” a ”to”
◦ ”pošleme vám zbožı́” – NP jsou ”zbožı́”a ”vám”
◦ ”jak vypadal svět před 100 lety očima vesmı́ru” – NP jsou ”svět”,

”před sto lety” a ”očima vesmı́ru”
◦ ”z nichž každý” – správné NP jsou ”z nichž” a ”každý”

• NP nezačı́ná ani nekončı́ na interpunkci ani na žádné jiné divné znaky
(hvězdička, závorka, pomlčka, uvozovky a jiné)

◦ ”na 5 tisı́c Kč,” ”přı́liš nákladné,” ”*Michal Malý” NEJSOU NP

• správná je jen nejdelšı́ možná NP podle pravidel výše

◦ ”zcela jiné starosti” je správná NP, ”jiné starosti” nebo ”starosti” jsou
špatné NP
◦ ”okolo půl milionu” je správná NP, ”milionu” nebo ”půl milionu”

jsou špatné NP
◦ ”nadějnost českého trhu” je jedna NP

• správné NP jsou také:

◦ ”10
◦ ”100 Kč”
◦ ”20 až 30 dnů”
◦ ALE ”od 200 do 600 m” – NP jsou ”od 200” a ”do 600m”

138

A. CZECH BUSHBANK MANUAL FOR ANNOTATORS

• přı́stavky a jiná interpunkcı́ oddělená bližšı́ určenı́ určujeme jako NP
zvlášť

◦ ”Marie Nováková, učitelka na základnı́ škole” – NP jsou ”Marie
Nováková”, ”učitelka” a ”na základnı́ škole”

◦ ALE ”učitelka Marie Nováková” je jedna NP – ”Marie Nováková”
je špatná NP

• přı́slovce patřı́ do NP pouze pokud před ně lze postavit předložku

◦ ”téměř tři hodiny” – můžeme řı́ci ”za téměř tři hodiny”, tudı́ž téměř
patřı́ do NP
◦ stejně tak i přı́slovce ”asi”, ”přibližně”, ”napřı́klad nebo na přı́klad”

(”napřı́klad zelenina” je NP)
◦ ALE nepatřı́ ”už”, již” (”už dvě hodiny” – NP je ”dvě hodiny” bez

už)

• do NP nepatřı́ slovesa, částice a citoslovce

◦ ”až 500 kč” – NP je pouze ”500 kč”

COORD
• skládá se z několika NP + spojovacı́ výrazy (čárka, spojka)

◦ ”džı́py a obrněné vozy” je koordinace, ”džı́py” a ”obrněné vozy”
jsou NP
◦ ”pes nebo kočka” je koordinace a ”pes” a ”kočka” jsou NP
◦ ”originálnı́ rozhodnutı́ či certifikát” je koordinace, a ”originálnı́ roz-

hodnutı́” a ”certifikát” jsou NP

• aby šlo o koordinaci, je nutné, aby byl hlavnı́ (řı́dı́cı́) člen NP několika-
násobný

◦ ”na nákup chemikáliı́ a vybavenı́” nenı́ koordinace, ale NP, protože
řı́dı́cı́ člen je ”nákup”
◦ ”ministerstvo školstvı́, mládeže a tělovýchovy” nenı́ koordinace –

protože hlavnı́ člen je ”ministerstvo”

• pokud před několikanásobným větným členem stojı́ předložka, NENÍ
to koordinace, protože hlavou fráze a řı́dı́cı́m členem je předložka

◦ ”mluvil o mı́ru a svornosti” – ”mı́ru a svornosti” závisı́ na předložce
”o”, nenı́ koordinace
◦ ”bı́lá a černá kočka” NENÍ koordinace, muselo by být ”bı́lá kočka a

černý pes”

139

A. CZECH BUSHBANK MANUAL FOR ANNOTATORS

• nezačı́ná ani nekončı́ na interpunkci ani na žádné jiné divné znaky
(hvězdička, závorka, pomlčka, uvozovky a jiné)
• pro přı́pad typu ”sice X, ale Y” jsou ”Y” a ”X” NP a ”sice X, ale Y” je

koordinace

◦ ”sice dům, ale malý” je koordinace

VP
• VP je slovesná fráze, obsahuje POUZE slovesné tvary a nic jiného

◦ včetně tvarů: bych, bys, by, bychom, bysme
◦ včetně pomocných tvarů slovesa být a jejich negacı́: jsem, jsi, je, jsme,

jste, jsou, budu, budeš, bude, budeme, budete, budou)

• jedna VP obsahuje právě jedno významové sloveso =¿ jednoduchá věta
může obsahovat vı́c VP

◦ ”šel nakoupit” – VP jsou ”šel” a ”nakoupit”
◦ ”šel bys nakoupit” – správné VP jsou ”šel bys” a ”nakoupit”
◦ ”budu hrát fotbal” – VP je ”budu hrát”
◦ ”vše jsme uplatnili” – VP je ”jsme uplatnili”

• spojky ”aby”, ”kdyby” a jejich tvary, tj. ”abych, abys, aby, abychom,
abyste, aby...” do VP nepatřı́

◦ ”abych šel” – VP je pouze ”šel”

• jedna VP také spolu s významovým slovesem obsahuje slovesa mo-
dálnı́ i jejich negace, tedy ”chtı́t”, ”mı́t (povinnost)”, ”moci”, ”umět”,
”smět”, ”muset”, ”lze”, ”nelze”, ”nechtı́t”

◦ ”může dojı́t k sejmutı́ klateb” – VP je ”může dojı́t”
◦ ”rozhodnutı́ musı́ zrát” – VP je ”musı́ zrát”
◦ ”má se stát prezidentem” – VP je ”má stát”
◦ ”úkony nelze hradit” – VP je ”nelze hradit”
◦ ”bude muset o odvolánı́ uchazeče rozhodnout” – VP je ”bude muset

rozhodnout”
◦ ”mohlo by dojı́t k sejmutı́ klateb” – VP je ”mohlo by dojı́t”, ”mohlo

dojı́t” je špatná VP

• fázová slovesa tvořı́ samostatnou VP

◦ ”začı́t bruslit” – VP jsou ”začı́t” a ”bruslit”
◦ ”potřebuji spravit” – VP jsou ”potřebuji” a ”spravit”
◦ ”ošetřujı́cı́ lékař odmı́tl sdělit” – VP jsou ”odmı́tl” a ”sdělit”

• VP NIKDY neobsahuje se/si

140

A. CZECH BUSHBANK MANUAL FOR ANNOTATORS

◦ ”domnı́vám se” – VP je pouze ”domnı́vám”

• několikanásobný přı́sudek rozdělujeme:

◦ ”musı́ ošetřovat a bodovat” – VP jsou ”musı́ ošetřovat” a ”bodovat”

• VP u přı́sudku jmenného:

◦ ”je potřeba zakročit” – VP jsou ”je” a ”zakročit”; ”potřeba” je NP
◦ stejným způsobem napřı́klad ”je dobré udělat”

• jedna VP obsahuje i sloveso v přı́čestı́ trpném

◦ ”byl zabit” – je VP
◦ ”byl jeho post předurčen” – VP je ”byl předurčen”

• ALE pokud je tam adjektivum nebo pokud je přı́čestı́ trpné odvozeno
od adjektiva (tj. nelze utvořit slovesný infinitiv), nenı́ součástı́ VP

◦ ”je ochoten” – VP je pouze ”je”, ”ochoten” je NP
◦ ale ”byl zabit” je VP
◦ ”byl zabitý” – VP je ”byl”, ”zabitý” je NP

• slovesná spojenı́ typu ”mı́t uděláno” jsou jedna VP, stejně tak přı́čestı́
trpné je jedna VP i když je pomocné ”je” vypuštěno

◦ ”mı́t spočteno” – jedna VP
◦ ”sečteno a podtrženo” – VP jsou ”sečteno” a ”podtrženo”

• VP nezačı́ná ani nekončı́ na interpunkci ani na žádné jiné divné znaky
(hvězdička, závorka, pomlčka, uvozovky a jiné)

◦ ”*chci podpořit” je špatná VP

• VP určujeme i pokud je v závorce

◦ ”Firma (jejı́ jméno neuvádı́me) se skládá ze dvou ekonomicky a
obchodně samostatných divizı́.” – VP jsou ”neuvádı́me”, ”skládá”

• VP neobsahuje ”-li”

◦ ”pomineme-li bezdrátové telefony” – VP je pouze ”pomineme”

CLAUSE
• CLAUSE je jednoduchá věta (může obsahovat vı́ce VP)
• celá zobrazená věta je CLAUSE, pokud se nejedná o souvětı́ (nemusı́ ob-

sahovat VP)
• podřadı́cı́ spojka na začátku nepatřı́ do CLAUSE (že, aby)
• souřadı́cı́ spojky na začátku nepatřı́ do clause
• relativnı́ zájmena a přı́slovce tam patřı́ (který, jenž, kolik, kdy, jak)

141

A. CZECH BUSHBANK MANUAL FOR ANNOTATORS

• CLAUSE nezačı́ná ani nekončı́ na interpukci (ale může ji obsahovat)
• nezačı́ná na 3), 15), §264, ...
• může obsahovat zátvorky, pokud v nich nenı́ dalšı́ CLAUSE

RELATIONS
Navázánı́ na NP:
• snažı́me se vytvořit nejdelšı́ platnou NP a navazujeme vždycky na řı́dı́cı́

NP

◦ ”muž s dalekohledem”: ”s dalekohledem”→ ”noun: muž”

• je v pořádku nepřiřadit NP nikam
• když jsou NP součástı́ koordinace, tak se váže k slovesu nebo k jiné NP

jen koordinace a NP se navazujı́ na koordinaci
• ”pejsek a kočička běhali”:

◦ ”pejsek a kočička”→ ”verb: běhali”
◦ ”pejsek”→ ”noun: pejsek a kočička”
◦ ”kočička”→ ”noun: pejsek a kočička”

• pokud se NP nenavazuje nikam, použijte ”not identified yet” nebo neur-
čujte
• nikdy nenavazujeme na strukturu (VP, NP), která je označena znamén-

kem ”-”, tedy je špatně, ani nenavazujeme samotnou špatnou strukturu
• pokud může být daná NP závislá na vı́ce frázı́ch (NP, VP – např. do-

plněk), určete ji podle významu (a sebe)

Navázánı́ na VP:
• navazujeme vždy na VP, která se vyskytuje ve stejné jednoduché větě

(pokud má věta vı́ce VP navazujeme k té, ke které se váže)
• ”se/si”, ”který”, ”jaký” jsou NP a vážeme je k přı́slušnému slovesu

142

Appendix B

English bushbank manual for annotators

NP
• NP (noun phrase) consists of nouns, adjectives, pronouns, numerals,

prepositions, abbreviation or participles or gerunds

◦ pronouns like which, what, that, his etc. are NP

• participles count as part of NP as they act as adjectives

◦ “the long and winding road” is NP
◦ in “all the research mentioned is on memory”, “all the research men-

tioned” is NP, “on memory” is NP and “is” is VP

• gerunds count as part of NP as they act as nouns

◦ in “eating a cake is easy”, “eating a cake” is NP

• NP are separated by relevance, generally indicated by a preposition –
prepositions have to be the first word of NP

◦ ”over 100 million in six years” – ”over 100 million” and ”in six
years” are two separated NP (also ”in” is a preposition)
◦ ”like mobile telephones” is NP
◦ ”their popular line of mobile music players are called iPods” – ”their

popular line”, ”of mobile music players” and ”iPods” are NP

• note that there are also multiple word prepositions, e.g. “because of”,
“as for”, “according to” – they are considered single prepositions

◦ “because of a giant sheep” is one NP

• words like ”near”, ”far” we consider preposition (they can be only at
the begining of NP)
• non-coordinating conjunctions, e.g. ”as”, ”if”, ”when” are not NP
• coordinating conjunctions, e.g. “and”, “or”, “but”, “yet” cannot be at

the beginning or at the end of NP

◦ ”word and voice memos” is one NP (”word” and ”voice” develop
word ”memos”)

143

B. ENGLISH BUSHBANK MANUAL FOR ANNOTATORS

◦ ”and the papers” is not NP

• punctuation (or other symbols like asterisks, dashes, brackets, quota-
tion marks etc.) cannot be at the begining or at the end of NP

◦ ”e-mail,” is not NP

• article is part of NP (but not at the end of NP)

◦ ”the difference” is NP

• appositions are independent NP only when separated by commas

◦ ”Tim Cook, Chief Executive Officer” – ”Tim Cook” and ”Chief Ex-
ecutive Officer” are two separated NP

• only the longest possible NP is correct, e.g.:

◦ ”of the most popular products ever developed”
◦ ”about 2,000 beautiful touching songs”
◦ ”in February 13, 2008”
◦ ”8 GB”

• when a preposition is not part of a phrasal verb and the object of the
preposition is missing or is a whole clause, only the preposition itself
is a NP

◦ in “the thing to think of”, “the thing” is NP, “to think” is VP, “of” is
NP
◦ in “think about how we are doing”, “think” is VP, “about” is NP,

“how we are doing” is another clause
◦ in “He sleeps as the rain falls”, “as” is NP
◦ in “I’m as tall as he is”, “as tall” is NP, “as” is NP

COORD
• COORD consist of several NP (including conjuctions or comma)

◦ ”lead, mercury, cadmium, hexavalent chromium, and PBB” is CO-
ORD
◦ remember inclusive or: in ”it allows researchers or clinicians”, ”re-

searchers or clinicians” is COORD
◦ ”learning and mental problems” IS NOT (!) COORD – word ”prob-

lem” is control member and ”learning” and ”mental” are develop-
ing members

• if there is a preposition at the begining of multiple constituent, it is not
COORD (a head of the phrase is the proposition)

144

B. ENGLISH BUSHBANK MANUAL FOR ANNOTATORS

◦ ”kinds of information and services” is not COORD

• punctuation (or other symbols like asterisks, dashes, brackets, quota-
tion marks etc.) cannot be at the begining or at the end of COORD

VP
• VP contains only verb forms
• one VP contains only one non-auxiliary verb =¿ there can be more VP

in a phrase

◦ ”go swimming” – ”go” and ”swimming” are two VP
◦ ”appears to be” – ”appears” and ”to be” are two VP
◦ auxiliary verbs (be, do, have and their forms: am, is, being, had etc.)

+ verb are ONE VP
. ”have explained”, “did not want”, “was working”, “is finished”

are one VP
◦ modal verbs (can, could, may, might, must, shall, should, would,

will) + verb are ONE VP
. ”could use them to make” – ”could use” is VP, ”them” is NP, ”to

make” is VP
◦ modal verbs with ”to”, e.g. have to, need to, aren’t considered mod-

al verbs themselves: in “have to see”, “have” and “to see” are VP

• the particle ”to” is a part of VP (in the infinitive verb form)

◦ ”to have” is one VP

• ”not” is part of VP

◦ ”did not want” is one VP

• passive constructions are one VP

◦ ”is also related to linguistics” – ”is related” is VP, ”also” and ”to
linguistics” are two NP
◦ ”is called” is VP
◦ ”it was first sold” – ”was sold” is VP

• it is necessary to separate multiple verbs

◦ ”can take and show” – ”can take” and ”show” are two VP

• when the verb is followed by a preposition (and therefore a NP after it),
the preposition is a part of NP, unless it is a phrasal verb according to
www.usingenglish.com/reference/phrasal-verbs (+ fuck off,
fuck up, piss off, ... :))

145

B. ENGLISH BUSHBANK MANUAL FOR ANNOTATORS

◦ in “what you are thinking of”, “are thinking” is VP, “of what” is NP
◦ in “(she) is looking after a baby”, “is looking after” is VP, “a baby”

is NP
◦ in “(I) will have stood by John”, “will have stood by” is VP, “John”

is NP
◦ in “(she) broke down”, “broke down” is VP
◦ in “(you) should think it over”, “should think over” is VP
◦ in “(I) am looking forward to the event”, “am looking forward to” is

VP, “the event” is NP
◦ in “(they) had been sitting in for a neighbor”, “had been sitting in

for” is VP, “a neighbor” is NP

CLAUSE
• is a simple sentence (containing one finite verb), or a phrase, if there is

no verb present

◦ ”the baby is crying loudly” is one clause
◦ ”visual illusions can be caused by imagination” is one clause
◦ ”The Curse of Mental Accounting” is one clause (it is a title)

• one clause can contain more than one VP (several non-finite verbs)

◦ ”someone tried to refuse to accept the offer” is one clause
◦ ”the history of the film turns out to be very interesting” is one clause

• only the longest possible clause is correct

◦ ”to be about 66 meters per second” is NOT a clause (part of the
clause is missing)
◦ ”is in the december edition of The Psychologist” is NOT a clause

(subject is missing)

• punctuation (or other symbols like asterisks, dashes, brackets, quota-
tion marks etc.) cannot be at the beginning or at the end of a clause

◦ 3), 15), §264,. . . are not clauses

• conjunctions (and, if, but, as, or, because,. . .) cannot be at the beginning
of a clause

◦ ”the water was warm, but I didn’t go swimming” – ”the water was
warm” and ”I didn’t go swimming” are clauses
◦ ”I see that you arrived” – ”I see” and ”you arrived” are clauses (that

is a conjunction)

146

B. ENGLISH BUSHBANK MANUAL FOR ANNOTATORS

• BUT relative pronouns and relative adverbs (which, who, that, what,
when, where, why, whatever, wherever, . . .) are part of a clause

◦ ”this is the boy who kissed her” – ”this is the boy” and ”who kissed
her” are clauses
◦ ”I ate the food that I made” – ”I ate the food” and ”that I made” are

clauses (that is a relative pronoun)

• the content in brackets is a separate clause, if there is a finite verb, oth-
erwise it is a part of one clause

◦ ”acquired immunodeficiency syndrome (AIDS) is a disease of the
human immune system” is one clause
◦ ”I was reading a book (it was an exciting story) in my living room”

– ”I was reading a book” and ”it was an exciting story” are clauses

• a clause can be embedded into another clause

◦ ”there is a table, obviously made to appear old, and a chair” – ”there
is a table and a chair” is the correct clause

RELATIONS
• only the longest possible NP can be dependent on a superior NP or on

VP

◦ ”man with a telescope” – ”with a telescope”→ ”noun: man”
◦ ”the beautiful young princess woke up” – ”the beautiful young prin-

cess”→ ”verb: woke up”

• if NP is not dependent on anything, use the option ”not identified yet”
• if NP is part of COORD, NP is dependent on the COORD and the

whole COORD is dependent on relevant VP

◦ ”dog and cat decided to bake a cake”
◦ ”dog and cat”→ ”verb: decided”
◦ ”dog”→ ”noun: dog and cat”
◦ ”cat”→ ”noun: dog and cat”

• wrong phrases can’t be related to anything and nothing can be depen-
dent on them
• if NP can be dependent on more phrases, choose the one most suitable

according to your opinion
• NP is dependent on VP which is in the same clause (choose the relevant

VP, if there are more VPs in a clause)

147

Appendix C

List of author’s publications

C.1 Peer reviewed journal papers

1. Irena Srdanović, Naomi Ida, Chikako Shigemori Bučar, Adam Kilgarriff,
and Vojtěch Kovář. Japanese word sketches: Advances and problems.
Acta Linguistica Asiatica, 1(2):63–82, 2011
[author’s contribution: 15% – annotation software, automatic evalua-
tions, partly design of the experiment]

C.2 Book chapters

1. Vojtěch Kovář, Miloš Jakubı́ček, and Jan Bušta. Czech vulgarisms in text
corpora. In After Half a Century of Slavonic Natural Language Process-
ing, pages 141–145, Brno, 2009. Tribun EU
[author’s contribution: 80% – majority of data collection, analysis and
text writing]

C.3 Peer reviewed conference papers

1. Vojtěch Kovář, Vladimı́r Kadlec, and Aleš Horák. Grammar develop-
ment for Czech syntactic parser with corpus-based techniques. In Pro-
ceedings of Corpus Linguistic 2006, pages 159–165, Saint-Petersburg,
2006. Saint-Petersburg State University
[author’s contribution: 60% – design and implementation of the central
experiment]

2. Vojtěch Kovář and Aleš Horák. Reducing the number of resulting pars-
ing trees for the Czech language using the beautified chart method. In
Proceedings of the 3rd Language & Technology Conference, pages 433–
437, Poznań, Poland, 2007. Wydawnictwo Poznańskie
[author’s contribution: 70% – implementation of the method, design and
implementation of the experiments, majority of text writing]

148

C. LIST OF AUTHOR’S PUBLICATIONS

3. Vojtěch Kovář and Aleš Horák. Power networks dialogues - automatic
analysis and evaluation of a domain-specific text corpus. In Proceedings
of ELNET 2007, pages 30–37, Ostrava, 2007. Faculty of Electrical Engi-
neering and Computer Science, VŠB - Technical University of Ostrava
[author’s contribution: 60% – implementation of the experiments, part
of text writing]

4. Pavel Rychlý and Vojtěch Kovář. Displaying bidirectional text concor-
dances in KWIC format. In Proceedings of 5th Biennial Conference of the
Asian Association for Lexicography, pages 61–66, Madras, India, 2007.
University of Madras
[author’s contribution: 40% – part of implementation, majority of text
writing]

5. Aleš Horák, Tomáš Holan, Vladimı́r Kadlec, and Vojtěch Kovář. Depen-
dency and phrasal parsers of the Czech language: A comparison. In Pro-
ceedings of Text, Speech and Dialogue, 10th International Conference,
volume 4629 of Lecture Notes in Computer Science, pages 76–84, Berlin,
2007. Springer
[author’s contribution: 20% – design and implementation of one part of
the experiment, minor part of text writing]

6. Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Power networks di-
alogs - enhancing domain-specific text processing techniques and re-
sources. In Proceedings of ELNET 2008, pages 72–80, Ostrava, 2008.
Faculty of Electrical Engineering and Computer Science, VŠB - Techni-
cal University of Ostrava
[author’s contribution: 50% – implementation of experiments, part of
text writing]

7. Vojtěch Kovář, Aleš Horák, and Vladimı́r Kadlec. New methods for
pruning and ordering of syntax parsing trees. In Proceedings of Text,
Speech and Dialogue, 11th International Conference, volume 5246 of
Lecture Notes in Computer Science, pages 125–131, Berlin, 2008. Sprin-
ger
[author’s contribution: 50% – implementation and partly design of the
experiments, part of text writing]

8. Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Syntactic analysis as
pattern matching: The SET parsing system. In Proceedings of 4th Lan-
guage & Technology Conference, pages 978–983, Poznań, Poland, 2009.
Wydawnictwo Poznańskie

149

C. LIST OF AUTHOR’S PUBLICATIONS

[author’s contribution: 90% – system design, majority of implementation
and text writing]

9. Miloš Jakubı́ček, Aleš Horák, and Vojtěch Kovář. Mining phrases from
syntactic analysis. In Proceedings of Text, Speech and Dialogue, 12th
International Conference, volume 5729 of Lecture Notes in Computer
Science, pages 124–130, Berlin, 2009. Springer
[author’s contribution: 10% – minor contributions to design and imple-
mentation of the method]

10. Abhilash Inumella, Adam Kilgarriff, and Vojtěch Kovář. Associating col-
locations with dictionary senses. In Proceedings of 6th Biennial Confer-
ence of the Asian Association for Lexicography, pages 102–113, Bangkok,
Thailand, 2009. Asian Association for Lexicography
[author’s contribution: 20% – partial contributions to design and imple-
mentation of presented methods]

11. Adam Kilgarriff, Vojtěch Kovář, and Pavel Rychlý. Tickbox lexicography.
In eLexicography in the 21st century: New challenges, new applications,
pages 411–418, Louvain la Neuve, Belgium, 2010. Presses universitaires
de Louvain
[author’s contribution: 40% – implementation and partly design of the
method]

12. Marek Grác, Miloš Jakubı́ček, and Vojtěch Kovář. Through low-cost an-
notation to reliable parsing evaluation. In PACLIC 24 Proceedings of the
24th Pacific Asia Conference on Language, Information and Computa-
tion, pages 555–562, Sendai, Japan, 2010. Tohoku University
[author’s contribution: 33% – parser development, partly methodology
design and text writing]

13. A. Kilgarriff, V. Kovář, S. Krek, I. Srdanović, and C. Tiberius. A quantita-
tive evaluation of Word Sketches. In Proceedings of the XIV Euralex In-
ternational Congress, pages 372–379, Ljouwert, Netherlands, 2010. Frys-
ke Akademy
[author’s contribution: 30% – implementation and partly design of the
experiment]

14. Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. Syntactic analysis us-
ing finite patterns: A new parsing system for Czech. In Human Lan-
guage Technology. Challenges for Computer Science and Linguistics,
volume 6562 of Lecture Notes in Computer Science, pages 161–171, Ber-
lin, 2011. Springer

150

C. LIST OF AUTHOR’S PUBLICATIONS

[author’s contribution: 90% – system design, majority of implementation
and text writing]

15. Vı́t Baisa and Vojtěch Kovář. Information extraction for Czech based
on syntactic analysis. In Proceedings of the 5th Language & Technol-
ogy Conference, pages 466–470, Poznań, Poland, 2011. Funcacja Univer-
sytetu im. A. Mickiewicza
[author’s contribution: 50% – system design and partly implementation,
evaluation, part of text writing]

16. Adam Kilgarriff, Pavel Rychlý, Vojtěch Kovář, and Vı́t Baisa. Finding
multiwords of more than two words. In Proceedings of the 15th EU-
RALEX International Congress, pages 693–700, Oslo, 2012. University of
Oslo
[author’s contribution: 20% – implementation and partly design of one
of the methods]

17. Iztok Kosem, Vı́t Baisa, Vojtěch Kovář, and Adam Kilgarriff. User-friend-
ly interface of error/correction-annotated corpus for both teachers and
researchers. In Book of Abstracts LCR 2013, pages 82–84, Bergen, 2013.
University of Bergen
[author’s contribution: 25% – contributions to implementation and inter-
face design]

18. Marek Medved’, Miloš Jakubı́ček, and Vojtěch Kovář. Towards taggers
and parsers for Slovak. In Proceedings of 6th Language & Technology
Conference, pages 1–4, Poznań, Poland, 2013. Wydawnictwo Poznańskie
[author’s contribution: 10% – contributions to grammar engineering]

19. Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlý, and Vı́t
Suchomel. The TenTen corpus family. In 7th International Corpus Lin-
guistics Conference CL 2013, pages 125–127, Lancaster, 2013. Lancaster
University
[author’s contribution: 15% – contributions to methodology and data
analysis]

20. Miloš Jakubı́ček and Vojtěch Kovář. Enhancing Czech parsing with verb
valency frames. In Computational Linguistics and Intelligent Text Pro-
cessing - 14th International Conference, CICLing 2013, volume 7816 of
Lecture Notes in Computer Science, pages 282–293, Greece, 2013. Sprin-
ger
[author’s contribution: 25% – valency data processing, partly text writ-
ing]

151

C. LIST OF AUTHOR’S PUBLICATIONS

C.4 Other papers

1. Vojtěch Kovář. Corpus query system Bonito - recent development. In
Proceedings of First Workshop on Recent Advances in Slavonic Natural
Language Processing, pages 71–76, Brno, 2007. Masaryk University

2. Vojtěch Kovář and Miloš Jakubı́ček. Test suite for the Czech parser Synt.
In Proceedings of Second Workshop on Recent Advances in Slavonic
Natural Language Processing, pages 63–70, Brno, 2008. Masaryk Uni-
versity
[author’s contribution: 60% – majority of design and implementation,
part of text writing]

3. Vojtěch Kovář and Miloš Jakubı́ček. Prague dependency treebank anno-
tation errors: A preliminary analysis. In Proceedings of Third Workshop
on Recent Advances in Slavonic Natural Language Processing, pages
101–108, Brno, 2009. Masaryk University
[author’s contribution: 60% – majority of both data analysis and text
writing]

4. Miloš Jakubı́ček, Vojtěch Kovář, and Aleš Horák. Measuring coverage of
a valency lexicon using full syntactic analysis. In Proceedings of Third
Workshop on Recent Advances in Slavonic Natural Language Process-
ing, pages 75–79, Brno, 2009. Masaryk University
[author’s contribution: 10% – minor contributions to design and imple-
mentation of the experiment]

5. Vojtěch Kovář, Aleš Horák, and Miloš Jakubı́ček. How to analyze natural
language with transparent intensional logic? In Proceedings of Fourth
Workshop on Recent Advances in Slavonic Natural Language Process-
ing, pages 69–76, Brno, 2010. Masaryk University
[author’s contribution: 50% – substantial contribution to methodology
design, implementation and text writing]

6. Miloš Jakubı́ček and Vojtěch Kovář. CzechParl: Corpus of stenographic
protocols from Czech parliament. In Proceedings of Fourth Workshop on
Recent Advances in Slavonic Natural Language Processing, pages 41–46,
Brno, 2010. Masaryk University
[author’s contribution: 10% – minor contribution to data analysis]

7. Miloš Jakubı́ček, Vojtěch Kovář, and Pavel Šmerk. Czech morphological
tagset revisited. In Proceedings of Fifth Workshop on Recent Advances
in Slavonic Natural Language Processing, pages 29–42, Brno, 2011. Tri-
bun EU

152

C. LIST OF AUTHOR’S PUBLICATIONS

[author’s contribution: 33% – contributions to analysis, modification pro-
posals and text writing]

8. Aleš Horák, Miloš Jakubı́ček, and Vojtěch Kovář. Analyzing time-related
clauses in transparent intensional logic. In Proceedings of Fifth Work-
shop on Recent Advances in Slavonic Natural Language Processing,
pages 3–9, Brno, 2011. Tribun EU
[author’s contribution: 20% – contributions to implementation and text
writing]

9. Aleš Horák, Miloš Jakubı́ček, and Vojtěch Kovář. Linguistic logical anal-
ysis of direct speech. In Proceedings of Sixth Workshop on Recent Ad-
vances in Slavonic Natural Language Processing, pages 51–59, Brno,
2012. Tribun EU
[author’s contribution: 20% – contributions to implementation and text
writing]

10. Jan Rygl, Kristýna Zemková, and Vojtěch Kovář. Authorship verifica-
tion based on syntax features. In Proceedings of Sixth Workshop on Re-
cent Advances in Slavonic Natural Language Processing, pages 111–119,
Brno, 2012. Tribun EU
[author’s contribution: 20% – contributions to method design and text
writing]

11. Marek Medved’, Miloš Jakubı́ček, Vojtěch Kovář, and Václav Němčı́k.
Adaptation of Czech parsers for Slovak. In Proceedings of Sixth Work-
shop on Recent Advances in Slavonic Natural Language Processing,
pages 23–30, Brno, 2012. Tribun EU
[author’s contribution: 10% – contributions to grammar engineering]

12. Ondřej Herman and Vojtěch Kovář. Methods for detection of word usage
over time. In Proceedings of Seventh Workshop on Recent Advances in
Slavonic Natural Language Processing, pages 79–85, Brno, 2013. Tribun
EU
[author’s contribution: 15% – contributions to method design]

C.5 Software

1. Jaroslav Moravec, Vojtěch Kovář, Jan Bušta, and Miloš Jakubı́ček.
OOCorr, 2010. nlp.fi.muni.cz/projects/oocorr
[author’s contribution: 15% – minor contributions to design and imple-
mentation]

153

C. LIST OF AUTHOR’S PUBLICATIONS

2. Vojtěch Kovář, Miloš Jakubı́ček, and Aleš Horák. Syntactic parser SET,
2012. nlp.fi.muni.cz/projects/set
[author’s contribution: 90% – system design, majority of implementa-
tion]

154

