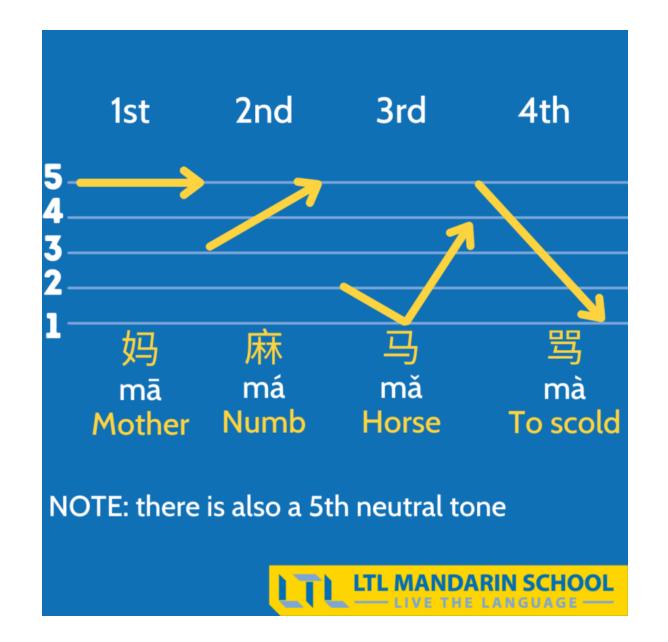
Guiding LLMs by speech melody

David Porteš

Prompt:

Generate a catchy slogan for a car company.

Audio input:


The pre-crafted melody of the slogan

Motivation: Prosody in speech translation

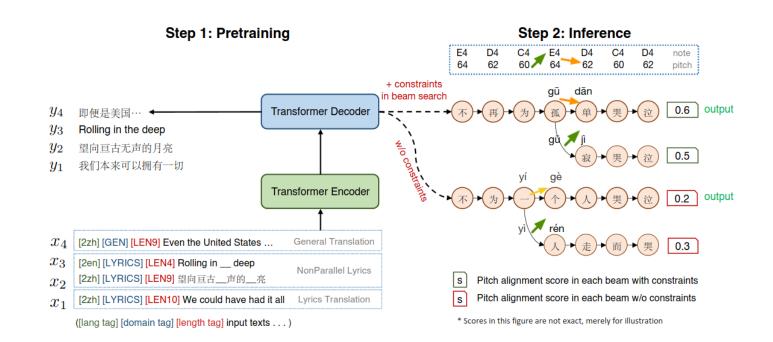
- Prosody Intonation, stress and rhythm of speech
- Two main approaches for ST:
 - Cascade transcribe, translate, synthesize
 + Lots of parallel text data available
 - Discards all prosodic information from the audio
 - End-to-end use parallel speech-to-speech data
 + Translation can be influenced by prosodic features
 - Data scarcity
- Can we get the best of both worlds?
- If only we could use prosodic features to guide **text-totext** translation...

Inspiration: Song translation into tonal languages

- In tonal languages, intonation influences meaning
- If song lyrics do not match the melody, misunderstandings happen

Lyricsmelody mismatch example

Misheard Lyrics (Consistent Tone)

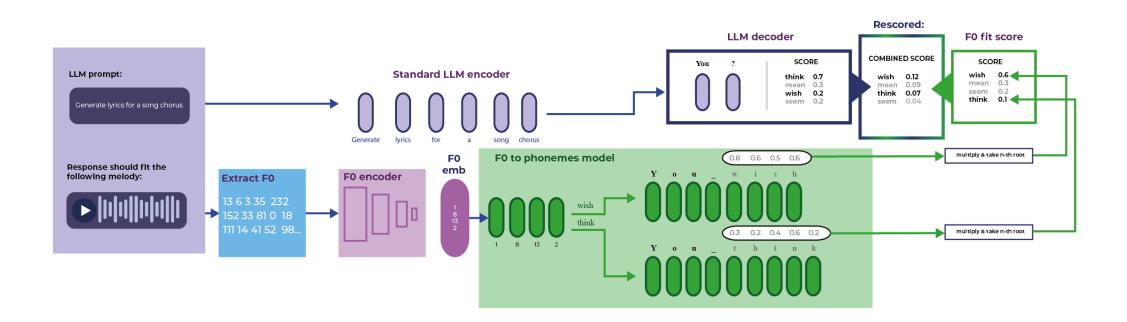

Die before my eyes

Inter-syllable pitch alignment score: 0.75

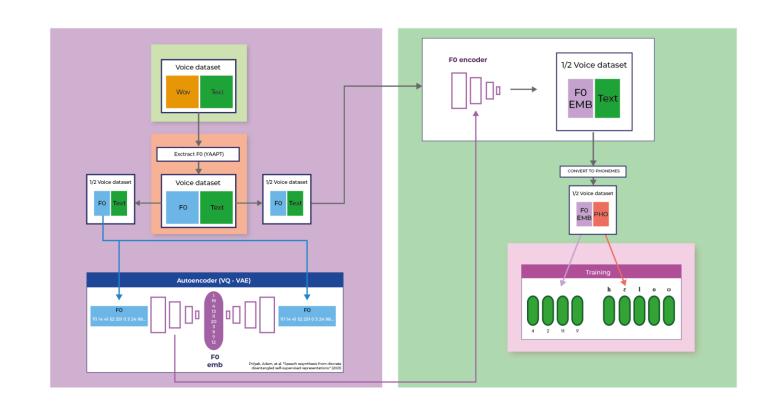
Automatic Song Translation for Tonal Languages (Guo et al. 2022)

Inspiration: GagaST song translator

- GagaST song translator
 - Automatic Song Translation for Tonal Languages (Guo et al. 2022)
- Rescores each token during the decoding phase
- Aligns translated lyrics to song melody


Automatic Song Translation for Tonal Languages (Guo et al, 2022)

Adapting GagaST


- GagaST uses prosodic features (intonation) to guide text-to-text translation of song lyrics
- Let's adapt it to speech translation!
- The original audio could be the 'song', and the translation could be the 'lyrics'
- But it uses the musical score of the song...
- And it uses Mandarin, where tone-word relationship falls into 4 pre-defined categories...

Introducing Meligner (WIP)

- We propose MElody aLIGNER (MELIGNER)
 - Instead of a musical score
 - Uses the YAAPT algorithm to extract melody (F0 curve) from source audio
 - Converts it into vector embeddings by VQ-VAE
 - Instead of the 4 tones of Mandarin
 - Uses a seq2seq model trained on parallel melody-text data
 - Learns the tone-word correspondence in the target language
 - Rescores each token during the LLM's decoding phase

Models' training

- We use two trainable models
 - VQ-VAE autoencoder
 - seq2seq model
 - Standard transformer architecture in our experiments

Why stop at speech translation?

- The ability to prescribe a target melody can be useful in other tasks
- We can use the LLM prompt for all kinds of tasks
 - Generate slogans
 - Do Automatic Speech Recognition (ASR)

Genera	ate a catchy slog	gan for a car com	oany.		
Audio inp	The pre-cra	afted melody of t	he slogan	11	
Prompt:					
"Conti	nue the text: '*p	previous context*			

A new NLP task: Melodic Alignment

- Goal: Make LLM generated text fit a custom speech melody
- Evaluation metric: ASR- based 'Rank-shift score'
 - Fix an LLM
 - Take a speech-transcription pair
 - Let the LLM generate text without any prompt
 - Use the speech recording to rescore LLM outputs at each decoding stage
 - At each stage, observe the rank of the 'correct' token before and after rescoring
 - (the correct token is the token in the transcription at the current decoding position)
 - Report the average rank-shift the difference in rank before and after rescoring, averaged over all stages

Conclusion

- A novel task: Melody Alignment
- Originally motivated for prosody-driven speech translation
 - But can be useful for other tasks, depending on the LLM prompt
- Defined as a wrapper over LLMs
 - Won't be made obsolete by LLM improvement
- A first-shot architecture at solving the task: Meligner
 - Reads in the melody in form of vector embeddings
 - Uses a melody-text seq2seq model to rescore LLM outputs

Future work

- Implement and evaluate Meligner using the rank-shift metric
- Evaluate on speech-translation benchmarks
- Also evaluate on other tasks, such as low-quality sound ASR or song lyrics generation
- Use the same approach for other prosodic features (stress, rhythm)

