

Creating a Human-Annotated Health Record Dataset with Limited Resources

Krištof Anetta
xanetta@fi.muni.cz
Natural Language Processing Centre
Faculty of Informatics, Masaryk University
December 9, 2023

Introduction

Introduction

Introduction

- Getting health records from hospitals is hard
 - Getting annotated ones is next to impossible
- We have a 42-million-word dataset of oncology health records and we are trying to get as much of it annotated
- A balanced set of ca. 50,000 words was chosen to be annotated by humans

Visualization of what we want

Before annotation

Before annotation

Preannotation

- Easy concepts can be found with rule-based methods
- It is much faster and more accurate when they are already present and annotators only verify them (but they must verify them)
- We preannotated:
 - Medication names
 - Medical abbreviations

Medication: SÚKL databases

8949	EZETROL	10MG	TBL NOB	100
9709	SOLU-MEDROL	40MG/ML	INJ PSO LO	40MG+1M
9710	SOLU-MEDROL	62,5MG/N	INJ PSO LO	125MG+21
9711	SOLU-MEDROL	62,5MG/N	INJ PSO LO	500MG+7,
9712	SOLU-MEDROL	62,5MG/N	INJ PSO LO	1000MG+1
9844	TORECAN	6,5MG	TBL OBD	50
10032	PIRACETAM AL	800MG	TBL FLM	60
10033	PIRACETAM AL	800MG	TBL FLM	120
10045	AGNUCASTON		TBL FLM	30
10046	AGNUCASTON		TBL FLM	60
10047	AGNUCASTON		TBL FLM	100
10052	AGNUCASTON		TBL FLM	300
10055	TABACUM	31CH-200	GRA	4G
10063	BROMHEXIN KM	8MG/ML	POR GTT S	1X30ML
10073	ECHINACEA ANGUSTIFOLIA	31CH-200	GRA	1X4G
10087	LOBELIA INFLATA	31CH-200	GRA	1X4G
10111	DHC CONTINUS	120MG	TBL MRL	56

Abbreviations: Web resources

Seznam zkratek

Přehled používaných zkratek

ARR

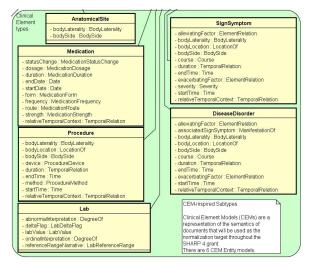
., a.	arterie
A	alergická anamnéza
AA	aneurysma abdominální aor
AT	antikoantrotomie
b	abort (potrat)
В	arteria brachiális
B I. dx.	arteria brachialis vpravo
B I. sin.	arteria brachialis vlevo
BD, abd.	abdukce
BF	aortobifemorální
BI	index kotník - paže

acidobazická rovnováha

Po	Používané zkratky ve zdravotnické dokumentaci EÚ			
Lékařské názvy				
šž	štítná žláza	bilat.	oboustranný	
ko	kontrols	unilat.	jednostranný	
vyš.	vyšetření	dx.	vpravo, pravý	
skut.	skutní	sin	vlevo, levý	
chron.	chronický	L	lumbální (bederní)	
subklin.	subklinický	lob.dx., PL	pravý lalok štítné žlázy	
klin.	klinický	lob.sin., LL	levý lalok štítné žlázy	
de/komp.	de kompenzovaný		M-mammy	
opak.recid.	opakované, opakovaný		P- pubické ochlupení	
inic.	iniciálně, na začátku	Tanner	G - genitál	
palp.	palpačně, pohmatem		A- axilární ochlupení	
V.5.	pravděpodobně	PMV	psychomotorický vývoj	
domin.	dominantní	FG scôre	skóre dle Ferrimana a Gallwayové	
stac.	stacionární, nezměněný	PMR.	psychomotorická retardace	
lab.	laboratorni			

Zkratka	Výklad zkratky
Ab	Protilátka (z angl. Antibody)
ACE	acetyl cholin esteráza
ACE	angiotensin konvertující enzym
ACEI	inhibitory acetylcholinesterázy
ACTH	Adrenokortikotropní hormon
AChR	Acetylcholinové receptory
AD	autozomálně dominantní
ADD	Porucha pozornosti (attention deficit disorder)
ADH	Antidiuretický hormon, vazopresin

https://nlp.fi.muni.cz/projekty/ehr analysis/zkratky/

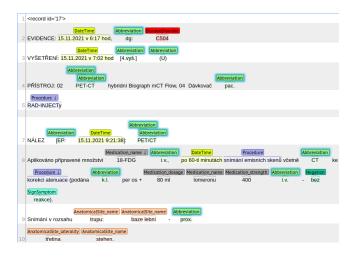

Annotation

Annotation

Annotators

- 11 students
- Confidence considerations:
 - Since they are not experts, each record is annotated by at least 2 students
 - When they both annotate a string in the same way, confidence is high
 - But even when their views differ, they may both be right we mark those as 50% confidence

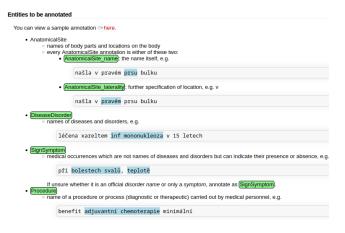
Annotation schema: Apache cTAKES types



The referential semantics schema used in Apache cTAKES [1]

Annotation schema

cTAKES type	Our schema	
AnatomicalSite	AnatomicalSite_laterality	
Anatomicatorie	AnatomicalSite_name	
	Medication_dosage	
Medication	Medication_name	
	Medication_strength	
Procedure	Procedure	
	Lab_name	
Lab	Lab_unit	
	Lab_value	
SignSymptom	SignSymptom	
DiseaseDisorder	DiseaseDisorder	
	DateTime	
	Abbreviation	
	Negation	


Annotation in BRAT

Annotator options in BRAT

Annotator's manual

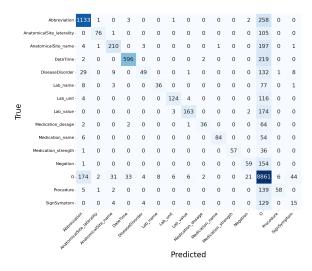
Annotation statistics

Stage	Annotation count
Initial state of health records	0
Rule-based preannotations	4,266
Preannotations handed to annotators	9,368
New annotations entered by annotators	22,798
Total number of human-verified or human- entered annotations	32,166
Total number of tokens with human-verified or human-entered annotation	45,032

Example of differences

Annotator 1 (record was at the beginning of their dataset)

Annotator 2 (record was in the middle)



Preliminary NER training

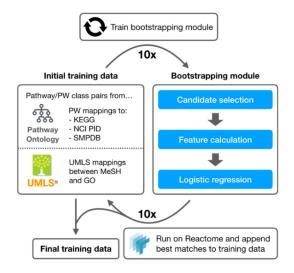
Preliminary NER training

- Stanford NER
- Cross-evaluation
 - 5 different subsets of data train on 4, evaluate on 1 as gold standard, calculate average

NER Results

Preliminary NER training

Class	Precision	Recall	F1 score
Abbreviation	0.885	0.707	0.781
AnatomicalSite_laterality	0.871	0.460	0.595
AnatomicalSite_name	0.871	0.426	0.568
DateTime	0.936	0.635	0.753
DiseaseDisorder	0.555	0.235	0.320
Lab_name	0.627	0.297	0.385
Lab_unit	0.778	0.389	0.511
Lab_value	0.832	0.394	0.524
Medication_dosage	0.637	0.286	0.390
Medication_name	0.959	0.554	0.701
Medication_strength	0.822	0.605	0.673
Negation	0.616	0.354	0.416
O (no annotation)	0.803	0.969	0.878
Procedure	0.767	0.319	0.439
SignSymptom	0.440	0.077	0.124
Weighted average	0.819	0.813	0.789



Future directions

Future directions

- 50,000 words is not enough for Transformer training
- Bootstrapping more data:
 - Iterative annotation train smaller models, annotate larger data, evaluate errors, correct
 - Eventually, the whole 40,000,000 corpus could be annotated lower quality, but sufficient size for LLMs

Iterative bootstrapping

Thank you for your attention!

MUNI

FACULTY OF INFORMATICS