
Development of the NVH Schema Format for
Lexicographic Purposes

Marek Medveď1,2, Miloš Jakubíček1,2, Vojtěch Kovář1,2, and Tomáš Svoboda1

1 Lexical Computing,
Brno, Czechia

2 Masaryk University
Brno, Czechia

name.surname@sketchengine.eu

Abstract. Aunified e-dictionary entry format is one of themost important
things to consider when building a new dictionary. In the Lexonomy
tool, where the new NVH lightweight markup language is used to store
dictionary data, an NVH schema is assigned to each dictionary, specifying
the NVH structure belonging to each dictionary entry. Until now, the
schemata used in Lexonomy were quite limited and focused only on the
position of a node in the NVH hierarchy and on the arity of its occurrence.
In the recent development, we identified a need for a more fine-grained
restriction mechanism and, therefore, extended the NVH schema format
so that it can also inspect the value of each node according to its type and
confirm match according to a predefined regular expression.

Keywords: NVH, XML, Name-Value Hierarchy, Lexonomy, Sketch En-
gine

1 Introduction

The Name-Value Hierarchy or NVH is a lightweight markup language targeted
at dictionary development [1]. It is a user-friendly alternative to XML-encoded
plain text formats, currently used in many digital dictionaries, and store dictio-
nary entries in a more compact and readable form.

The NVH language is currently the backbone format of the Lexonomy sys-
tem [2,3], which is focused on digital dictionary development. Recent develop-
ments of the Lexonomy system led to changes that needed to be incorporated
into the NVH language, especially the schema that specifies the final structure
of the developed dictionary.

In this paper, wewill introduce dictionary schemamodifications that restrict
each node value inside the NVH according to the model needs.

2 Name-Value Hierarchy markup language

Name-Value Hierarchy (NVH) is a plain text-based format similar to XMLwith
much simpler syntax. An NVH file consists of a list of nodes, where each node

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2023, pp. 101–106, 2023. © Tribun EU 2023



102 M. Medveď et al.

has its name and optional value separated by a colon-space character. Each node
can also contain a list of child nodes prefixed by Python-like indentation (see
Figure 1).

hw: car
lemma: car
pos: NOUN
image: car.jpg

quality: good
explicit: no

Fig. 1: NVH sample

3 Schema

A dictionary schema is always required along with the dictionary content in
NVH. The purpose of the schema is to avoid nodes that are not important or
unwanted for the dictionary in hand and also to automatically check if the
dictionary content complies with the predefined dictionary schema.

The previous version of an NVH schema supported essential value restric-
tion that defines the number of required nodes with the specific name (see Fig-
ure 2). Using the question mark character (“?”) on the position of the value, the
schema allows the use of none or one node with the specified name (i.e., lem-
pos). The plus character (“+”) requires at least one node with the name inside
the dictionary (like hw). Similarly, the number followed by the plus character
requires using at least the given number of nodes. The star character (“*”) puts
no restrictions on the node as it can appear from zero to infinity times (i.e., au-
dio). Finally, the names with no value in the schema must appear exactly once
(i.e., lemma).

The expressive ability of the previous schema implementation was very
limited, and could not catchmostmistakesmade by annotators. For example,we
could require lempos attribute to be present in each dictionary entry. Still, there
is no option to set the format of the lempos value if wewant it to be a combination
of the lemma and one character representing the part of speech. Therefore, we
expanded the original schema form with a new set of parameters.

In this new NVH schema, we introduce an extended definition for the
number of nodes, type of the value, and usage of regular expressions for string
values.

3.1 Extended definition for number of nodes

Similarly to the previous version, the new schema definition can encode how
many nodes with the specific name are required inside the dictionary entry.



Development of the NVH Schema Format for Lexicographic Purposes 103

hw: +
lemma:
lempos: ?
pos:
freq: ?
audio: *
image: 2+

quality: ?
explicit: ?
source: ?

examples:
example: 2+

translation: *
language:

affiliation: ?

Fig. 2: Basic NVH schema node restrictions

Using the “?”,+, *, and 2+, we can restrict the number of nodes aswe introduced
above. On top of that, the new schema definition introduces range “1-5” that
can set the upper bound as well as the lower bound, which was not previously
available (i.e., image node in Figure 3).

hw: +
lemma: ?
lempos: ? ~.*-.
pos: ?
freq: ? int
audio: * audio
image: 1-5 image

quality: ? ["good","bad"]
explicit: ? bool
source: ? url ~.*pixabey.*

examples: empty
example: 2+ ~.{1,50}

translation: *
language: ~.{3}

affiliation: * ["MU (Brno)", "VUT \"Brno\"", "UK, Praha"]

Fig. 3: NVH schema with all supported value restrictions



104 M. Medveď et al.

3.2 Value types

The new schema format introduces the support for typing. There are seven types
that have been developed according to Lexonomy usage and should cover the
majority of user needs inside the Lexonomy tool:

– audio type is a string that restricts the node value an audio file by matching
the string with a list of supported audio extensions. In the current version
we support these audio extensions: .3gp, .aa , .aac, .aax , .act ,
.aiff , .alac , .amr , .ape , .au, .awb, .dss, .dvf, .flac, .gsm,
.iklax, .ivs, .m4a, .m4b, .m4p, .mmf, .movpkg, .mp3, .mpc, .msv,
.nmf, .ogg, .oga, .mogg, .opus, .ra, .rm, .raw, .rf64, .sln, .tta,
.voc, .vox, .wav, .wma, .wv, .webm, .8svx, .cda.

– bool type restrict the node value to just Boolean values True and False.
These two values can be expressed by: True, False, true, false, Yes,
No, yes, no, 0, 1.

– empty type does not put any restriction on the value but requires the value to
be empty. This type should be used for the nodes that introduce a container,
like examples node in Figure 3.

– image type is the same as audio type except for the list of supported ex-
tensions: .jpeg, .jpg, .png, .gif, .bmp, .tiff, .svg, .raw, .ico,
.webp, .heic, .heif, .psd, .eps, .ai, .tga, .pdf.

– int type restricts the value only to integer numbers.
– list type is not explicitly used inside the NVH schema but is determined

according to the list of possible values (like quality and affiliation in Figure
3).

– string is the default type and does not need to be explicitly used in the
schema.

– url type confirms if the node’s value is a URL link.

3.3 Regular expressions

Character-based types url and string additionally support regular expression
restrictions that have to match with the node value. The tilde character (∼)
always introduces a regular expression. The format of the regular expression
follows the Python regular expression syntax of the re module3 or any other
user-specified format that should be provided as a comment in the schema (a
comment is any line starting with the # character).

3.4 NVH script modifications

The Python script nvh.py is adopted to the above-mentionedmodifications. The
schema validation, as well as schema generation operations, are modified to
account for the new types and regular expressions.
3 https://docs.python.org/3/library/re.html



Development of the NVH Schema Format for Lexicographic Purposes 105

{
"hw": {"min": 1, "max": Infinity, "type": "string",

"children": ["lemma", "lempos", "pos", "freq", "audio", "image",
"examples", "translation", "affiliation"]},

"lemma": {"max": 1, "type": "string"},
"lempos": {"max": 1, "type": "string", "re": ".*-."},
"pos": { "max": 1, "type": "string"},
"freq": {"max": 1, "type": "int"},
"audio": {"max": Infinity, "type": "audio"},
"image": {"children": ["quality", "explicit", "source"],

"min": 1,"max": 5, "type": "image"},
"quality": {"max": 1, "type": "list", "values": ["good", "bad"]},
"explicit": {"max": 1, "type": "bool"},
"source": {"max": 1, "type": "url", "re": ".*pixabey.*"},
"examples": {"children": ["example"], "min": 1, "max": 1, "type": "empty"},
"example": {"min": 2, "max": Infinity, "type": "string", "re": ".{1,50}"},
"translation": {"children": ["language"], "max": Infinity, "min":0,

"type": "string"},
"language": {"min": 1, "max": 1, "type": "string", "re": ".{3}"},
"affiliation": {"max": Infinity, "min": 0, "type": "list",

"values": ["MU (Brno)", "VUT \"Brno\"", "UK, Praha"]}
}

Fig. 4: JSON export of the NVH schema from Figure 3

For Lexonomy purposes, we also include a new type of export. The NVH
schema can nowbe exported into the JSON format that can be useful for any tool
incorporating the NVH format. Currently, this export is used by the Lexonomy
system frontend to validate whether annotators’ input follow the restrictions
defined by the schema before being stored in the final dictionary NVH file.
Figure 3 presents an example of JSON export of the schema from Figure 4.

4 Conclusions

This paper presents new NVH schema modifications that allow dictionary
managers to define more precisely how the dictionary entry will be developed.
The new type of restrictions together with regular expressions can exactly
specify the value of each node. This unique design of the NVH schema strictly
directs the annotators during the dictionary development and avoids mistakes
and unnecessary post-processing of inconsistent annotations.

References
1. Jakubíček, M., Kovář, V., Měchura, M., Rambousek, A.: Using NVH as a Backbone

Format in the Lexonomy Dictionary Editor. In: Proceedings of Recent Advances in
Slavonic Natural Language Processing, RASLAN 2022. (2022) 55–61



106 M. Medveď et al.

2. Měchura, M.B., et al.: Introducing Lexonomy: an open-source dictionary writing and
publishing system. In: Electronic Lexicography in the 21st Century: Lexicography
from Scratch. Proceedings of the eLex 2017 conference. (2017) 19–21

3. Rambousek, A., Jakubíček,M., Kosem, I.: NewDevelopments in Lexonomy. Electronic
lexicography in the 21st Century (eLex 2021) Post-editing lexicography (2021) 86


