
Blooming Onion: efficient 
deduplication through approximate 

membership testing
Ondřej Herman



Deduplication

● Large collections of text contain duplicates.
● Humans like to copy.

○ Boilerplate
○ Spam
○ Copy & Paste
○ Headers, Footers
○ Processing artifacts

● Undesirable in downstream applications.



Onion (One Instance Only)

● Deduplication utility
● Based on overlapping n-grams, shingles.
● Discards paragraphs containing a large proportion of previously seen n-grams.

○ 7-grams, over 50 %

<p> The quick brown fox . </p> The quick red fox . </p>

The quick The quick

quick brown quick red

brown fox red fox

fox . fox .



Onion

● Hashes of shingles are stored in an associative array
○ Judy array
○ Hash table in newer versions



Blooming Onion



Gluten Free Vegan Baked Blooming Onion

https://petiteallergytreats.com/gluten-free-vegan-baked-blooming-onion/



Blooming Onion

● Same principle as Onion, but use a Scalable Bloom Filter to store the shingles.
● Written in Rust, under 150 SLOC.



Blooming Onion

● No false negatives.
○ More strict than the exact variant – more text might be identified as duplicate.

● The false positive rate for the Scalable Bloom Filter is set to 1 %.



Evaluation

Susanne corpus, repeated 20 times (100 MB, 190 k lines, 97.5 % duplicate)

7 days of the JSI Newsfeed Corpus (13 GB, 876 k lines, 64 % duplicate)

Runtime Max RSS

Blooming Onion 1.94 s 3608 MB

Onion 1.71 s 30616 MB

Runtime Max RSS

Blooming Onion 720.6 s 271.6 MB

Onion 491.3 s 2367.2 MB



Conclusion

● I wrote a prototype deduplication tool, which is 25 % slower than Onion, but 
requires only 10 % of the memory.


