
Constructing Datasets from Dialogue Data

Ondřej Sotolář , Jaromír Plhák , Michaela Lebedíková , Michał
Tkaczyk , and David Šmahel

Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00, Brno, Czech Republic

{xsotolar, xplhak, x450458, x245062, davs}@fi.muni.cz

Abstract. We present methods for transforming raw dialogue data into
a dataset suitable for processing with statistical NLP models. We reveal
the potential pitfalls for processing this type of data, such as ensuring the
representatives of the sample, the generalization ability ofmodels, and the
definition of the local context of the utterances. We use novel methods to
solve these problems and demonstrate their effectiveness on an utterance
classification problem. As a result, this paper provides guidelines for
generating valuable datasets from dialogue data.

Keywords: Dialogue Dataset, Dataset Split, Online Conversations

1 Introduction

Online communication allows for the synchronous exchange of text, images,
voice, and videos between two or more people [6]. It is realized using native ap-
plications such asMessenger, WhatsApp, and Discord, through social networks
such as Facebook or Twitter, dedicated internet forums, and online discussions
in general. Such communication is often studied in dialogue systems, which is
concerned with designing agents (commonly called chatbots) that are capable
of participating in the discourse [7]. In the case of dialogue systems, we have
information available about the dialogue, such as the intents, topics, and dialog
flow, because the agent actively shapes the discourse. In this work, we consider
the general case, where we do not have this type of special information, and we
work only with the text content of the dialogues and their metadata.

Our motivation for examining a sample of online dialogues is the discovery
of phenomena of interest. Doing so with conventional and manual methods is
inefficient for two reasons: a sample of a significant size includes a large quantity
of unstructured text, and the occurrence of the researched phenomena might
be low [14]. While this goal is similar to intent detection, as known in dialogue
systems, using the existing methods is usually impossible. In the general case,
we lack information on the structure of the dialogues, which the conversational
agent controls. Information on how to approach Natural Language Processing
(NLP) tasks in the general case is scattered among small, often unrelated tasks
(such as Dialogue Act Recognition [11,10], Argument Mining [12,5,2,9], Short

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 131–139, 2022. © Tribun EU 2022

132 O. Sotolář et al.

Text Classification [8,4], or Emotion Detection [1]). This makes it difficult to
research methodologies for novel tasks.

This paper aims to present a practical methodology for processing raw
dialogue data.We provide guidelines with examples, diagrams, and algorithms
for the complete process of generating datasets from dialogue data. In Section 2,
we present a practical methodology for storing and retrieving the dialogues.
Section 3 presents an algorithm for constructing training examples with a local
context. Finally, in Section 4, we propose a novel algorithm for k-fold data
splitting.

2 Data Structure for Storing and Retrieving Dialogues

Dialogues are composed of temporal sequences of utterances as shown in Table 1.
Utterances are typically short text fragments, complete sentences, or short
sequences thereof. They are uniquely identified by their timestamp within the
dialogue. Metadata associated with individual utterances can be, for example,
the author, a reference to previous utterances (identifying a response), and
others. Many applications allow to use multi-media in the dialogues; however,
we omit them here.

Furthermore, in this work, we consider the data to be annotated with class
labels at the utterance level. The labels identify either syntactic or semantic
phenomena per their definition. Whether the dialogue context influences the
utterance labels is a design decision. In the following, we encode the none class
with index 0 and others with {1..𝑁}.

Table 1: Excerpt from a dialogue from the dataset from [13] (translated to
English) showing time, participant name, the utterance, and the phenomenon
label in each row.

Time Author Utterance Class
01:44:07 John I’ll finish the Math task tomorrow none
01:44:13 John Like, I really have to do it none
01:44:28 Tim The math task looks easy to me Emotional Support
01:44:49 Tim You have 6 hours to deadline, chill Emotional Support
01:46:34 John But I’m really tired after the day none
01:47:51 Tim I’m having some tea and I’m super none

To efficiently store and retrieve dialogues, we propose a hierarchical data
structure that reflects the relationships between the dialog components. At the
top level, we can, in many cases, identify an owner, first author, or originator
of the dialogue. In Instant Messaging (IM), it is a user; in forums and social
media, this would be the original poster (the topic creator). The second level
of the structure is composed of threads that group dialogues together. The set
of utterance authors in a thread is unique. Because threads might be long-
running, we suggest a third level of the structure. There, we delimit individual

Constructing Datasets from Dialogue Data 133

conversations with a time constraint to help separate different topics. We argue
that in long-running threads, after a certain pause, the topic is more likely
to change. We suggest finding the threshold for separating the conversations
experimentally. For example, with IM conversations, we have used 1-hour long
pauses to delimit them. The resulting structure is shown in Figure 1.

For practical reasons, wemap this structure to a table in a relational database
shown in Figure 2. In Figure 3, we show an example PostgreSQL query for
retrieving dialogue data. It is structured into conversations, where each row of
the result contains one conversation with its utterances and labels in ordered
lists. Any other metadata can be retrieved similarly.

Fig. 1: Data structure for
dialogues segmented
by the first author,
threads, time-delimited
conversations, and
utterances.

Fig. 2: Relational database table for structure shown
in Figure 1.

Fig. 3: Example of a SQL query (PostgreSQL) to
retrieve the time-delimited conversations.

3 Constructing Training Examples with Local Context

To construct training examples, we could use individual utterances. However,
previous research [3,10,4,9] has shown that including the context of the dialogue
can improve the solutions for many different tasks. In this work, where we
consider utterance-level labels, we also use the concept of local context. The
local context of a target utterance is defined as a window of the neighboring
utterances. The size and position of the context window is a design decision.
It is called local context because the window size usually covers only a few
utterances, and its purpose is to help the model to capture local dependencies.
This contrasts with other types of context, such as the whole dialogue or the
language style of a particular user across many dialogues. Such types of context
often span a large amount of text, which has to be condensed due to the practical
limits of sequential models used in NLP. Conversely, local context can usually
be used in its original text form.

134 O. Sotolář et al.

We present an algorithm for delimiting the local context of a target utterance
in Algorithm 1. We use the sliding window concept. We found that individual
utterances differ significantly in their character length; thus, we do not define
the threshold with an utterance count but with a character count instead. In our
algorithm, the context window includes an arbitrary number of neighboring
utterances as long as the sumof their character lengths does not exceed the given
limit. The limit is soft: if the character limit is reached within the bounds of an
utterance, it is appended as a whole, thus exceeding the limit. The algorithm
constitutes a complete solution to generate the training dataset if iterated over
selected conversations (or whole threads).

Algorithm 1: Algorithm for constructing training examples.
function rows_to_examples
Input :𝑟𝑜𝑤𝑠: list of utterance tuples (text, label ∈ {0..𝑁}, metadata) ordered by

time (conversation or whole thread),
𝑐𝑡𝑥: character length of context,
𝑠𝑒𝑝: utterance separator,
𝑠𝑒𝑝𝑡𝑎𝑟𝑔𝑒𝑡: separator of target utterance,
ℎ𝑎𝑠_𝑠𝑚𝑎𝑙𝑙_𝑝𝑖𝑒𝑐𝑒𝑠: stop if window reaches start & contains all 0s.

Output :𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠: set of examples as tuples (text, label, metadata)
𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 ← ∅;
for 𝑡, 𝑙 in rows do

if 𝑙𝑒𝑛(𝑡) < 2 then # Case when only one utterance in dialogue
Compose function concatenates the utterance data in the
window (uses separators for text).

𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠.𝑎𝑑𝑑(𝑐𝑜𝑚𝑝𝑜𝑠𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑡, 𝑙, 𝑠𝑒𝑝, 𝑠𝑒𝑝𝑡𝑎𝑟𝑔𝑒𝑡)));
continue

𝑡𝑎𝑟𝑔𝑒𝑡𝑖 ← 𝑙𝑒𝑛(𝑡) − 1;
while 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 > 0 do # Case when 2 and more utterances

𝑙𝑎𝑠𝑡𝑖 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑖;
𝑐ℎ𝑎𝑟𝑐𝑛𝑡 ← 0;
while 𝑙𝑎𝑠𝑡𝑖 > 0 & 𝑐ℎ𝑎𝑟𝑐𝑛𝑡 < 𝑐𝑡𝑥 do

𝑙𝑎𝑠𝑡𝑖 −= 1;
𝑐ℎ𝑎𝑟𝑐𝑛𝑡 += 𝑙𝑒𝑛(𝑡[𝑙𝑎𝑠𝑡𝑖]);
𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠.𝑎𝑑𝑑(

𝑐𝑜𝑚𝑝𝑜𝑠𝑒_𝑒𝑥𝑎𝑚𝑝𝑙𝑒(𝑡[𝑙𝑎𝑠𝑡𝑖 ∶ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 + 1], 𝑙[𝑙𝑎𝑠𝑡𝑖 ∶
𝑡𝑎𝑟𝑔𝑒𝑡𝑖 + 1], 𝑠𝑒𝑝, 𝑠𝑒𝑝𝑡𝑎𝑟𝑔𝑒𝑡)));

if ℎ𝑎𝑠_𝑠𝑚𝑎𝑙𝑙_𝑝𝑖𝑒𝑐𝑒𝑠 & 𝑙𝑎𝑠𝑡𝑖 = 0 & 𝑠𝑢𝑚(𝑙[0 ∶ 𝑡𝑎𝑟𝑔𝑒𝑡𝑖]) = 0 then
break;

𝑡𝑎𝑟𝑔𝑒𝑡𝑖 −= 1;

return 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠;

Constructing Datasets from Dialogue Data 135

4 Selecting Representative Samples

The performance of predictive models is measured with a testing sample that
is unseen during training. The measurement reliability depends on the validity
of this sample, which should be representative of the actual data, to determine
whether the model overfits the training sample. With dialogues, this concerns
the style of individual authors and also the topics of the conversations, which
might have a distinct vocabulary. We argue that splitting such data naively into
the training and testing samples may positively bias the performance measure-
ment, thus not reflecting the model’s true generalization ability. Imagine a user
who authorsmany utterances on a single topicwith distinct keywords. Consider
a classification task: if we split this data between the train and test samples, we
risk overfitting themodel on the keywords, then also successfully classifying the
examples in the test set. This would result in amodel with a goodmeasured per-
formance but a poor generalization ability because it would likely fail on data
from other users.

To avoid this issue, we first suggest analyzing the data with regard to the
contributions of individual utterance authors. In Figure 4, we show different
samples of a dataset from [13], each annotated with a different class. We would
assume that sample a) is not representative and sample b) is representative
of real-world data based on the distribution of the contributions of different
authors of the utterances.

a) b)

Fig. 4: The content contributions in samples of the IM dataset from [13], each
labeled with a particular class. One rectangle represents a person. The relative
size of the rectangle and the numberwithin each rectangle represent the number
of utterances they authored.

Second, we suggest using k-fold cross-validation. To use it, we need to
split the data in a stratified manner for a given k. However, standard splitting
algorithms are unsuitable for dialogues because we need specific criteria to
define the splits. Ideally, we would have examples with disjoint sets of authors
in each split. This is not always necessary; thus, we need a parameter for setting
the maximal overlap of the example’s authorship between the splits (𝑚𝑎𝑥𝑐_𝑟𝑎𝑛𝑘).

136 O. Sotolář et al.

Furthermore, following the idea of stratified sampling, the splitting algorithm
should keep the same size of the splits and also the same class ratio.

In Algorithms 2, 3, and 4, we present the dialog_k_fold algorithm, which
splits the data into k different groups per the specified criteria. If such a split
exists, the algorithm will return the number of splits given by the 𝑘 parameter.
Otherwise, it will return themaximumpossible splits for the criteria plus the set
of remaining examples. We formalize the condition for proving its effectiveness
in Lemma 1.

Algorithm 2: Algorithm for modified k-fold split for dialogue data.
function dialog_k_fold
Input :𝐸: set of examples,

𝑘: desired number of splits,
𝑚𝑎𝑥𝑐_𝑟𝑎𝑛𝑘: threshold for maximum number of author overlap

Output :𝑠𝑝𝑙𝑖𝑡𝑠: list of 1..𝑘 data splits
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟: examples excluded from the split groups

𝑇 ← 𝑔𝑟𝑜𝑢𝑝_𝑏𝑦_𝑎𝑢𝑡ℎ𝑜𝑟_𝑡𝑢𝑝𝑙𝑒𝑠(𝐸);
𝐺 ← (𝑔1, ..., 𝑔𝑘);
𝑅 ← ∅;
while ∃𝑡 ∈ 𝑇 ∶ ¬∃𝑔 ∈ 𝐺 ∶ 𝑡 ∈ 𝑔 do

𝑡 ← 𝑡 with 𝑚𝑖𝑛(𝑡.𝑐_𝑟𝑎𝑛𝑘), if tied then use 𝑚𝑎𝑥(𝑡.𝑠𝑖𝑧𝑒);
𝑔 ← 𝑏𝑒𝑠𝑡_𝑔𝑟𝑜𝑢𝑝(𝐺, 𝑡, 𝑚𝑎𝑥𝑐_𝑟𝑎𝑛𝑘, 𝑠𝑖𝑧𝑒(𝐸)

𝑘 , 𝑙𝑎𝑏𝑒𝑙_𝑟𝑎𝑡𝑖𝑜(𝐸));
𝑔.𝑎𝑑𝑑(𝑡);

𝑅 ← 𝑇 � {𝑡 ∶ 𝑡 ∈ 𝑔, 𝑔 ∈ 𝐺};
return G, R;

Lemma 1. Given a dataset 𝒟 , a model performance measurement ℳ(𝑡𝑟𝑎𝑖𝑛,
𝑡𝑒𝑠𝑡), let (𝑑1, 𝑑2, 𝑑3) ← 𝑑𝑖𝑎𝑙𝑜𝑔_𝑘_𝑓 𝑜𝑙𝑑(𝒟, 𝑘 = 3) create three splits, where the overlap
between utterance authors is minimal. Set 𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡 ← 𝑑3 aside as a holdout set and
merge the rest 𝒟𝑛𝑒𝑤 ← 𝑑1 ∪ 𝑑2. Let:

𝒮𝑟𝑎𝑛𝑑 = (𝑟1, 𝑟2) ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑝𝑙𝑖𝑡(𝒟𝑛𝑒𝑤, 𝑘 = 2), (1)
𝒮𝑑𝑘𝑓 = (𝑓1, 𝑓2) ← 𝑑𝑖𝑎𝑙𝑜𝑔_𝑘_𝑓 𝑜𝑙𝑑(𝒟𝑛𝑒𝑤, 𝑘 = 2). (2)

Then, the (cross-validated) difference between ℳ(𝑟𝑥, 𝑟𝑦) and ℳ(𝑟𝑥,𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡) should
be greater than if we use 𝒮𝑑𝑘𝑓 for training. The following condition should hold up to
additional cross-validation, i.e. for all permutations of (𝑑1, 𝑑2, 𝑑3):

𝑎𝑣𝑔|ℳ(𝑟𝑥, 𝑟𝑦) −ℳ(𝑟𝑥,𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡)| > 𝑎𝑣𝑔|ℳ(𝑓𝑥, 𝑓𝑦) − ℳ(𝑓𝑥,𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡)|, (3)

where:
𝑥, 𝑦 ∈ {1, 2}, 𝑥 ≠ 𝑦.

Proof. Weprove Lemma 1 experimentally using the dataset sample b) presented
in Figure 4, which shows the utterance author distribution. The results pre-
sented in Figure 5 demonstrate that condition (3) of Lemma 1 holds.

Constructing Datasets from Dialogue Data 137

Algorithm 3:Algorithm for grouping examples by author tuples. Addi-
tionally, it computes author overlap and ranks each group by its sever-
ity.
function group_by_author_tuples
Input :𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠(𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑, 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑙𝑖𝑛𝑒𝑠_𝑝𝑒𝑟_𝑎𝑢𝑡ℎ𝑜𝑟): set of examples
Output :𝑇: set of grouped examples with aggregate attributes
𝑇 ← group 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 by author tuples with aggregates:

𝑠𝑖𝑧𝑒 ← 𝑐𝑜𝑢𝑛𝑡(𝑙𝑎𝑏𝑒𝑙𝑠),
𝑟𝑎𝑡𝑖𝑜 ← ratio of labels in the group,
𝑎𝑢𝑡ℎ𝑜𝑟𝑠 ← indexed list with sum of each author’s utterance count.

for 𝑡 ∈ 𝑇 do # Calculate utterance authors overlap into an n-hot
vector

for 𝑎 ∈ 𝑡.𝑎𝑢𝑡ℎ𝑜𝑟𝑠 do
for 𝑔𝑖 ∈ 𝑇, 𝑔𝑖 ≠ 𝑡 do

𝑡.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠[𝑖] += if 𝑎 ∈ 𝑔𝑖.𝑎𝑢𝑡ℎ𝑜𝑟𝑠 then 𝑡.𝑐𝑜𝑢𝑛𝑡(𝑎) else 0;

Finally, we rank the groups in T. The rank values can have
duplicates.

foreach 𝑡 ∈ 𝑇: 𝑡.𝑐_𝑟𝑎𝑛𝑘 ← order of 𝑡 in 𝑇 ordered by 𝑠𝑢𝑚(𝑡.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠);
return 𝑇;

Algorithm 4: Algorithm for selecting the split group to add the given
author group.
function best_group
Input :𝐺: split groups,

𝑡: group of examples (grouped by author tuple),
𝑚𝑎𝑥𝑐_𝑟𝑎𝑛𝑘: threshold for maximal author overlap,
𝑠𝑖𝑧𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑: desired group size: ideally 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)

𝑘 ,
𝑐𝑙𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝑑𝑒𝑠𝑖𝑟𝑒𝑑: desired class ratio: ideally same as original dataset

Output :𝑔: chosen split group
𝑔𝑚 ← group with minimum conflicts with 𝑡;
if 𝑔𝑚.𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠(𝑡) > 𝑚𝑎𝑥𝑐_𝑟𝑎𝑛𝑘 then

return ∅;
𝑔𝑛 ← group with maximum |𝑔𝑛.𝑠𝑖𝑧𝑒 − 𝑠𝑖𝑧𝑒𝑑𝑒𝑠𝑖𝑟𝑒𝑑|with 𝑡;
𝑔𝑜 ← group with maximum |𝑔𝑛.𝑐𝑙𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 − 𝑐𝑙𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝑑𝑒𝑠𝑖𝑟𝑒𝑑|with 𝑡;
𝑔 ← select from {𝑔𝑚, 𝑔𝑛, 𝑔𝑜}with most votes, if tied then take 𝑔𝑚;
return 𝑔

138 O. Sotolář et al.

a) b)

Fig. 5: Model performance comparison using a performance metric ℳ (see
Lemma 1) and a holdout set 𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡, where utterances are authored by a
disjoint set of authors than in 𝒟𝑛𝑒𝑤. In a), 𝒟𝑛𝑒𝑤 is randomly split into (𝑟𝑥, 𝑟𝑦).
The model trained and tested on (𝑟𝑥, 𝑟𝑦) shows artificially higher measured
performance than the more reliable measured performance of the same model
tested on 𝒟ℎ𝑜𝑙𝑑𝑜𝑢𝑡. In b), where 𝒟𝑛𝑒𝑤 is split using dialog_k_fold, we can see the
significantly closer performance, proving the effectiveness of our algorithm.

5 Discussion and Limitations

We have experimentally proven that dialog_k_fold effectively improves the mea-
sured performance reliability. However, we have not given formal proof of the
algorithm correctness or time complexity.We leave this for future work. Further-
more, the function best_group defined in Algorithm 4 leads to amulti-criteria op-
timization problem, which in our current implementation, we have solved with
a rule-based, heuristic approach. We suggest finding an optimal solution in fur-
ther work. The function also needs to calculate the authorship overlap of each
utterance with each other in 𝒪(𝑛2) time which is expensive for large datasets.

6 Conclusion

We have presented practical methods for structuring, storing, and retrieving
dialogue data. We have also presented an algorithm for constructing training
examples from such data. Furthermore, we presented a novel k-fold algorithm
for the stratified splitting of datasets of dialogue data. We have demonstrated
that using our dialog_k_fold algorithm improves the reliability of performance
measurements when compared to naive splitting methods.

Acknowledgements. This work has received funding from the Czech Science
Foundation, project no. 19-27828X.

Constructing Datasets from Dialogue Data 139

References

1. Acheampong, F.A., Wenyu, C., Nunoo-Mensah, H.: Text-based emotion detection:
Advances, challenges, and opportunities. Engineering Reports (7), e12189 (2020)

2. Aker, A., Sliwa, A.,Ma, Y., Lui, R., Borad, N., Ziyaei, S., Ghobadi,M.:Whatworks and
what does not: Classifier and feature analysis for argument mining. In: Proceedings
of the 4th Workshop on Argument Mining. pp. 91–96 (2017)

3. Chatterjee, A., Narahari, K.N., Joshi, M., Agrawal, P.: Semeval-2019 task 3: Emocon-
text contextual emotion detection in text. In: Proceedings of the 13th international
workshop on semantic evaluation. pp. 39–48 (2019)

4. Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with
knowledge powered attention. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 6252–6259 (2019)

5. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse.
Computational Linguistics (1), 125–179 (2017)

6. Huang, H., Leung, L.: Instant messaging addiction among teenagers in china: Shy-
ness, alienation, and academic performance decrement. CyberPsychology & Behav-
ior (6), 675–679 (2009)

7. Jurafsky, D., Martin, J.H.: Chapter 24: Chatbots and dialogue systems in speech and
language processing. vol. 3. US: Prentice Hall (2014)

8. Lee, J.Y., Dernoncourt, F.: Sequential short-text classification with recurrent and
convolutional neural networks. arXiv preprint arXiv:1603.03827 (2016)

9. Lugini, L., Litman, D.: Contextual argument component classification for class
discussions. arXiv e-prints pp. arXiv–2102 (2021)

10. Martínek, J., Cerisara, C., Král, P., Lenc, L.: Cross-lingual approaches for task-specific
dialogue act recognition. In: IFIP International Conference on Artificial Intelligence
Applications and Innovations. pp. 232–242. Springer (2021)

11. Martínek, J., Král, P., Lenc, L., Cerisara, C.: Multi-lingual dialogue act recognition
with deep learning methods. arXiv preprint arXiv:1904.05606 (2019)

12. Persing, I., Ng, V.: End-to-end argumentation mining in student essays. In: Proceed-
ings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. pp. 1384–1394 (2016)

13. Sotolář, O., Plhák, J., Šmahel, D.: Towards personal data anonymization for social
messaging. In: International Conference on Text, Speech, and Dialogue. pp. 281–292.
Springer (2021)

14. Sotolář, O., Plhák, J., Tkaczyk, M., Lebedíková, M., Šmahel, D.: Detecting online risks
and supportive interaction in instant messenger conversations using czech trans-
formers. RASLAN 2021 Recent Advances in Slavonic Natural Language Processing
p. 19 (2021)

