
Automatic Identification of Speakers and Parties in
Steno Protocols of the Czech Parliament

Ota Mikušek

Natural Language Processing Centre
Faculty of Informatics, Masaryk University

xmikusek@fi.muni.cz

Lexical Computing, Brno, Czech Republic
ota.mikusek@sketchengine.eu

Abstract. There are many methods of machine learning. This paper
shows an application of basicmachine learningmethods like bag ofwords,
random forest and naive Bayes on classification task of assigning sentences
to members and parties of the Czech Parliament.

Keywords: scikit-learn, embedding, SVM, random forest, naive Bayes, n-
gram, CountVectorizer, classification

1 Introduction

Based on the data from the Czech Parliament between the years 2015 and
2019 [1], containing over 1,400,000 sentences of 14 political parties and over
100,000 tokens for 60 members. This work compare the methods of machine
learning that can classify the individual sentences of different members with
more than 100,000 spoken tokens and sentences of different parties of the Czech
Parliament. Among themethods for analysis there are: Decision trees, K-nearest
neighbors, Bag ofWords, Naive Bayes and others, or similar. Evaluation of these
methods will be done by covering 20% of source data for all models. For some
models input in form of word embeddings was chosen. Best models have been
tuned and evaluated.

All source code used for the implementation and evaluation is open source1.

2 Data exploratory analysis

The data [1] was obtained in a ZIP file containing the TEI, conll, and vertical
formats. Manual inspection of a random sample of 500 sentences did not reveal
any errors in typography or technical formatting. In all formats, words, lemmas,
tags, and position of words in a sentence were already precomputed.
1 https://gitlab.fi.muni.cz/xmikusek/czech-parlament-prediction

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 15–23, 2022. © Tribun EU 2022



16 O. Mikušek

3 Data preprocessing

To ease the development and unify annotation schemes of all the datasets, all
datawas reprocessed usingUnitok [5] for new tokenization, Desamb [8] for part-
of-speech tagging and lemmatization and the SET tool for parsing [4]. Original
annotations were not used. Data were split into three parts, test data (20 %),
validation data (16 %) and training data (64 %) with balanced representation of
every member sentences amount. In all models python library scikit-learn [6]
was used, expect models that used word embeddings as input, these models we
also using FastText [3] with external precomputed word embeddings [2].

3.1 Sentences

Since most machine learning methods always expect the same input length,
sentences were transformed with the scikit-learn CountVectorizer, which can
count n-grams in a sentence and transform them into numeric vectors of the
same length (the resulting vector, however, is not unique for each sentence).
Vectors for n-grams of lengths 1 to 3 were created simultaneously.

3.2 Lemmatization

Similar to sentences, the input for methods needs to be the same length. The
solution is the same as in sentences. We use sklearn CountVectorizer to create
vectors from n-grams of lengths 1 to 3.

3.3 Tagging

For tagging, the same problem arose as above, the problem that most machine
learning methods expect each sentence to have the same size of resulting tags.
Since desamb creates tags as pairs of characters, where the first describes the
tags and the second the value, this problemwas solved by preprocessing during
learning by concatenating all the tags and then splitting the characters into
pairs. A vector (of uniform length) representing the number of occurrences of
individual pairs was subsequently created from these pairs. As a result, the
information with which word the tag is associated was lost.

3.4 Syntactic analysis

Similar to tagging, the problem that arose is that most machine learning meth-
ods expects each sentence to have the exact size of the resulting analysis. The
problemwas solved by creating ordered triplets word1, dependency, andword2.
Subsequently, n-grams of lengths 1 to 3 were created simultaneously through
sklearn CountVectorizer.



Automatic Identification of Speakers in Steno Protocols 17

3.5 Additional information

The number of words in the sentence and the number of characters from the
set {”.”, ”, ”, ”!”, ”?”, ”−”, ”/”, ”””} [7] were added as additional information for
classification.

4 Classification results

Four types of models were trained (Table 1, Table 2, Table 3, Table 4, Table 5):

1. only from lemmatized sentence
2. only from lemmatized sentence with balanced classes
3. on all parameters
4. on all parameters with balanced classes

On two tasks:

1. party classification
2. member classification

Each table contains identifier of model, that was used as a folder name
containing that model, and model evaluation on validation or test data.

5 Models

5.1 Baseline (Simple bag of words)

This model is only exception and was trained on sentence word vectors (instead
of lemmas) with scikit-learn TreeClassifier to establish baseline.

This model achieved a precision of 29 % and a recall of 9 % on validation
tests in the party classification (Table 1). There are only two parties with higher
recall. First with recall 34 % and second with recall 20 %. The other parties have
a recall of less than 14 %.

On the contrary, both precision and recall are surprisingly higher than
expected in member classification (Table 3). This could be happening, because
some Parliament members use some words that are specific only to them.

5.2 Bag of words lemmatized

This model was created again with scikit-learn TreeClassifier, expect input
was lemmatized sentences. Model was tested only on validation tests in party
classification (Table 1). Compared to baseline, it seems like word form is not
important for correct classification.



18 O. Mikušek

Table 1: Party classification results on validation tests
Model folder name precision (%) Recall (%) Classes with precision

and recall 0 %
embeddings_lsvc 24 25 5
embeddings_naive_bayes 16 21 8
embeddings_random_forest 37 30 1
embeddings_svc DNF DNF DNF
simple_bag_of_words 29 9 3
lemma_bag_of_words 27 28 1
lemma_bag_of_words_limited250_balanced_ngrams1-3 29 24 0
lemma_bag_of_words_limited50 33 27 1
lemma_bag_of_words_limited500 27 28 1
lemma_bag_of_words_limited500_balanced_ngrams1-3 27 25 0
lemma_bag_of_words_limited50_balanced 35 14 0
lemma_bag_of_words_limited50_balanced_ngrams1-3 38 14 0
lsvc 35 35 1
lsvc_all_params 38 38 1
lsvc_all_params_balanced 38 38 1
lsvc_balanced 35 34 0
naive_bayes 49 32 1
naive_bayes_all_params 53 30 5
random_forest 53 26 1
random_forest_all_params 52 28 3
random_forest_all_params_balanced 35 20 1
random_forest_all_params_balanced_limited250 30 18 0
random_forest_all_params_balanced_limited50 30 18 0
random_forest_balanced 31 19 1
simple_bag_of_words 29 9 4
svc 19 18 11
svc_all_params DNF DNF DNF
svc_all_params_balanced DNF DNF DNF
svc_bag 43 29 2
svc_bag_all_params 46 26 5
svc_bag_all_params_balanced 46 26 5
svc_bag_balanced 43 29 5
svc_balanced 19 18 11

Table 2: Party classification on validation tests with tuned parameters
Model folder name precision (%) Recall (%) Classes with precision

and recall 0 %
random_forest 53 26 1
random_forest_tuning_1 53 26 1
random_forest_tuning_2 52 27 1
random_forest_tuning_3 53 25 3
random_forest_tuning_4 53 26 1
random_forest_tuning_5 54 26 1
random_forest_tuning_6 53 26 1
random_forest_tuning_7 51 27 1
random_forest_tuning_8 51 27 1
random_forest_tuning_9 54 26 1
random_forest_tuning_10 51 27 1



Automatic Identification of Speakers in Steno Protocols 19

Table 3: Member classification results on validation tests
Model folder name precision (%) Recall (%) Classes with precision

and recall 0 %
tokens_100000_embeddings_knn 31 29 0
tokens_100000_embeddings_lSVM 23 16 0
tokens_100000_embeddings_naive_bayes 12 15 38
tokens_100000_embeddings_random_forest 30 26 0
tokens_100000_embeddings_SVM 33 26 0
tokens_100000_naive_bayes_all_params 44 22 38
tokens_100000_random_forest 43 20 28
tokens_100000_random_forest_all_params 43 21 30
tokens_100000_random_forest_all_params_balanced 35 23 0
tokens_100000_random_forest_balanced 32 20 0
tokens_100000_simple_bag_of_words 26 27 0
tokens_100000_svc 42 33 0
tokens_100000_svc_all_params DNF DNF DNF
tokens_100000_svc_all_params_balanced DNF DNF DNF
tokens_100000_svc_balanced 36 30 0

Table 4: Member classification on validation tests with tuned parameters
Model folder name precision (%) Recall (%) Classes with precision

and recall 0 %
tokens_100000_random_forest 43 20 28
tokens_100000_random_forest_tuning_1 45 20 28
tokens_100000_random_forest_tuning_2 47 21 20
tokens_100000_random_forest_tuning_3 43 18 34
tokens_100000_random_forest_tuning_4 45 20 27
tokens_100000_random_forest_tuning_5 42 19 30
tokens_100000_random_forest_tuning_6 47 22 17
tokens_100000_random_forest_tuning_7 46 21 23
tokens_100000_random_forest_tuning_8 47 21 20
tokens_100000_random_forest_tuning_9 45 21 25
tokens_100000_random_forest_tuning_10 45 21 24

Table 5: Classification on test set
Model folder name precision (%) Recall (%) Classes with precision

and recall 0 %
random_forest_tuning_5 55 26 1
tokens_100000_random_forest_tuning_6 47 22 16



20 O. Mikušek

5.3 Naive Bayes

This model was trainded with scikit-learnMultinomialNB. It was expected that,
every party will say sentences, that have some specific key phrases just for that
party. Naive Bayes proves that this idea is maybe not entirely wrong, with it’s
increase in successful classification (Table 1) in comparison with baseline.

But on the contrary in member classification 38 members are not even
classified once in testing (Table 3). This could mean that some key phrases are
shared in members group and there fore these member are hard to distinguish
from one another.

5.4 Random forest

In party classification (Table 1), model was trained with scikit-learn Random-
ForestClassifier. Results were very similar with Naive Bayes, but only 1 class
remained with 0 % for precision and recall. Average precision was 53 %, and re-
call was 26 %. The best result was achieved on only lemmatized sentences. This
model was later selected for tuning.

Best model for member classification was created when using all features
as input with a precision of 43 % and a recall of 21 % (Table 3). However, 30
classes out of 60 have a precision and a recall of 0 %. The model that received
only lemmatized sentences as input had a precision of 43 % and a recall of 20 %
and was later chosen for tuning at the cost of a 1 % loss in a recall but addition
of 2 classified classes.

When model was tuned (Table 2, Table 4), parameters min_samples_leaf,
n_estimators and max_depth of RandomForestClassifier were modified. Best
models were evaluated on test data (Table 5).

5.5 SVM (Support vector machine)

Since SVM was running too long, for party classification (Table 1), regulation
parametr C=0.001 was used to make it run faster at the cost less successful
classification.2

For member classification (Table 3), model was unmodified.

5.6 Bag of SVM

This model was created as the reaction on slow learning SVMwith combination
of scikit-learn BaggingClassifier and SVC. A bag of 20 SVMs, where each SVM
classifies the input and then vote for over all classification. This method was
used only in party classification (Table 1).
2 See https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVM.
html for details.



Automatic Identification of Speakers in Steno Protocols 21

5.7 Naive Bayes with word embeddings
Input for this model was in form of word embedings processed with FastText
get_vector function. Precision of 24 % and a recall of 25 % in the party classi-
fication. 5 classes out of 14 had precision and recall of 0 %. For the member
classification, a precision of 37 % and a recall of 32 % were achieved. 4 classes
out of 60 had a precision and a recall of 0 %.

5.8 Random forest with word embeddings
Input for this model was in form of word embedings processed with FastText
get_vector function. The model did not surpass the previous models in party
classification. Precision 37 % and recall 30 %. 1 class out of 14 had precision and
recall of 0 %.

A precision of 43 % and a recall of 20 % were achieved in member classifica-
tion. 28 classes out of 60 had precision and recall of 0 %.

5.9 SVM with word embeddings
Input for this model was in form of word embedings processed with FastText
get_vector function. Unfortunately, the learning did not end in a reasonable time,
but the version with a linear kernel did with a precision of 24 % and a recall of
25 % in the party classification. 5 classes out of 14 had precision and recall of 0
%. For the member classification, a precision of 37 % and a recall of 32 % were
achieved. 4 classes out of 60 had a precision and a recall of 0 %.

5.10 KNN with word embeddings
Input for this model was in form of word embedings processed with FastText
get_vector function. Only used in the member classification, with resulting
precision of 31 % and recall of 29 %. No class out of 60 has a precision and recall
of 0 %.

6 Conclusions
Models were compared using validation data based on precision, recall, and the
number of classes remaining in the model with precision and recall at 0 %. In
both tasks, assigning a sentence to a party and assigning a sentence to one of
the 60 Parliament members with more than 100,000 spoken tokens, the random
forest model was the most successful, which, after the final tuning, achieved a
precision of 55 %, recall 26 % and only one class failed to classify at all in party
classification. In the member classification, the random forest model after the
final tuning achieved a precision of 47 %, a recall of 22 %, and had a problem
classifying 16 people out of 60.

The resulting models alone are not suitable for this type of sentence classifi-
cation. In particular, checking whether the sentence could have been uttered by
a specific politician is not suitable due to the low precision in both tasks, which
is around 50 %.



22 O. Mikušek

7 Future work

7.1 Data expansion

Since all sentences have the same political topic, it is hard to find differences
between one and another.More data could givemodelsmore rarewords towork
with.

7.2 Comparison with transformers or neural networks

The current trend in machine learning is transformers. It might be interesting
to see how the Czert model for sentence classification or perhaps models using
the gpt2 would deal with this task.

7.3 Alternative text segmentation

Machine learning may not be able to find differences in texts when they are all
about the same political topic. It is a question of whether it is even possible to
achieve good results based only on the analysis of one sentence.

Analysis at the level of entire paragraphs or documents would allow obtain-
ing more features from the input, such as the number of sentences spoken, fre-
quent repetition or use of rich vocabulary, or average sentence length.

References

1. Erjavec, T., Ogrodniczuk, M., Osenova, P., Ljubešić, N., Simov, K., Grigorova, V.,
Rudolf, M., Pančur, A., Kopp, M., Barkarson, S., Steingrímsson, S., van der Pol,
H., Depoorter, G., de Does, J., Jongejan, B., Haltrup Hansen, D., Navarretta, C.,
Calzada Pérez, M., de Macedo, L.D., van Heusden, R., Marx, M., Çöltekin, Ç., Coole,
M., Agnoloni, T., Frontini, F., Montemagni, S., Quochi, V., Venturi, G., Ruisi, M.,
Marchetti, C., Battistoni, R., Sebők, M., Ring, O., Darģis, R., Utka, A., Petkevičius, M.,
Briedienė, M., Krilavičius, T., Morkevičius, V., Bartolini, R., Cimino, A., Diwersy, S.,
Luxardo, G., Rayson, P.: Linguistically annotated multilingual comparable corpora
of parliamentary debates ParlaMint.ana 2.1 (2021), http://hdl.handle.net/11356/
1431, slovenian language resource repository CLARIN.SI

2. Herman, O.: Precomputed word embeddings for 15+ languages. In: RASLAN. pp. 41–
46 (2021)

3. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

4. Kovář, V., Horák, A., Jakubíček, M.: Syntactic analysis using finite patterns: A new
parsing system for czech. In: Human Language Technology. Challenges for Computer
Science and Linguistics. pp. 161–171. Springer, Berlin/Heidelberg (2011), http://dx.
doi.org/10.1007/978-3-642-20095-3_15

5. Michelfeit, J., Pomikálek, J., Suchomel, V.: Text tokenisation using unitok. In: Horák,
A., Rychlý, P. (eds.) RASLAN 2014. pp. 71–75. Tribun EU, Brno, Czech Republic (2014)



Automatic Identification of Speakers in Steno Protocols 23

6. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825–2830 (2011)

7. Sari, Y., Stevenson, M., Vlachos, A.: Topic or style? exploring the most useful features
for authorship attribution. In: Proceedings of the 27th International Conference on
Computational Linguistics. pp. 343–353. Association for Computational Linguistics,
Santa Fe, New Mexico, USA (Aug 2018), https://aclanthology.org/C18-1029

8. Šmerk, P.: Unsupervised Learning of Rules for Morphological Disambiguation. In:
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2004)


