Using FCA and Concept Explications for Finding an Appropriate Concept Raslan 2021

Marek Menšík¹, Adam Albert¹, Tomáš Michalovský²

VŠB – Technická univerzita Ostrava¹, Silesian University in Opava²

December 10, 2021

- 2 Supervised Machine Learning
- 3 Formal Conceptual Analysis and Aspirant Ordering
- 4 Case study

Explication

- Explication is the process of refinement of a vague or inaccurate expression into an adequately accurate one.
- Symbolic methods of Supervised machine learning + Transparent Intensional Logic are used to obtain explications of atomic concepts

 $'Dog \approx_{exp} \lambda w \lambda t \, \lambda x \, [['Domesticated \ 'Carnivore]_{wt} \, x]$

Types: Domesticated/ $((\iota)_{wt}(\iota)_{wt})$; Dog, Carnivore/ $(\iota)_{wt}$; $x \rightarrow \iota$

An Example of Explication

$$\begin{split} e_1 &= [Typp \ \lambda w \lambda t \ \lambda x[['\leq ['Weight_{wt} \ x] \ '11] \ \land \ ['\geq \\ ['Weight_{wt} \ x] \ '1.2]]['Wild \ 'Cat]] \ \land \ ['Req \ 'Mammal \ ['Wild \ 'Cat]] \ \land \\ &['Req \ 'Hasfur \ ['Wild \ 'Cat]] \ \land \ [Typp \ \lambda w \lambda t \ \lambda x[['\leq \\ [['Average \ 'BodyLength] \ x] \ '47]]['Wild \ 'Cat]] \ \land \ ['\geq \\ [['Average \ 'BodyLength] \ x] \ '47]]['Wild \ 'Cat]] \ \land \ [Typp \ \lambda w \lambda t \ \lambda x[['= \\ [['Average \ 'SkullSize] \ x] \ '41.25]]['Wild \ 'Cat]] \ \land \ [Typp \ \lambda w \lambda t \ \lambda x[['= \\ [['Average \ 'Height] \ x] \ '37, 6]]['Wild \ 'Cat]] \end{split}$$

Supervised machine learning

- Examples described by (input/output) attributes provided by a supervisor.
- Learner is building his hypothesis based on seen examples.
- Prediction of output attribute values based on the values of input attributes.
- Training/test examples.

Algorithm framework

- Machine learning algorithm can be described by:
 - Task goal
 - The goal is to discover the best refinement of the learned simple concept.
 - Training data
 - The learner is working with a set of positive and negative examples.
 - Positive examples contain concept requisites.
 - Negative examples specify properties which are not in the essence of a concept.
 - Data representation
 - Transparent Intensional Logic (TIL).
 - Knowledge modifying module \rightarrow three heuristic methods:
 - Specialization.
 - Generalization.
 - Refinement.

Knowledge modifying module

- Negative examples \rightarrow *Specialization* inserts negated constituents.
- Positive examples:
 - $\blacksquare \rightarrow \textit{Refinement}$ inserts new constituents into the molecular construction learned so far.
 - \bullet \rightarrow *Generalization* adjusts the constituents.

Specialization

If the negative example has a constituent that the model does not have.

- Hypothesis: Cat is a domesticated feline predatory mammal.
- Negative example: *Dog is a domesticated predatory mammal that barks.*

$$\lambda w \lambda t \lambda x \left[\left[\left['Feline \ ['Predatory 'Mammal] \right]_{wt} x \right] \land \\ \left['Domesticated_{wt} \ x \right] \land \\ \neg ['Bark_{wt} \ x] \land \neg ['Dog_{wt} \ x] \right] \right]$$

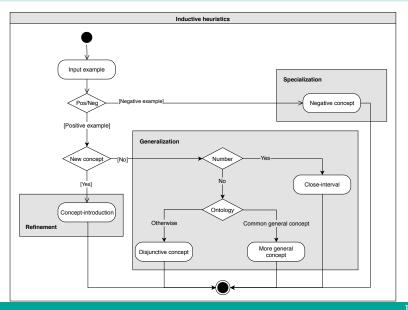
Refinement

If the positive example contains a constituent that the model does not have.

- Hypothesis: Cat is a domesticated feline predatory mammal and does not bark and is not a dog.
- Positive example: Cat has fur.

$$\lambda w \lambda t \lambda x \left[\left[\left['Feline \ ['Predatory 'Mammal] \right]_{wt} x \right] \land \\ \left['Domesticated_{wt} x \right] \land \left['Hasfur_{wt} x \right] \land \\ \neg ['Bark_{wt} x] \land \neg ['Dog_{wt} x] \right] \right]$$

Generalization


If the constituents of model and example differ and constituents do not have the most specific general concept.

Generalization is achieved by unifying these classes.

- Hypothesis: Cat is a domesticated feline predatory mammal which is wild or domesticated and does not bark and is not a dog and has a fur.
- Positive example: Cat is a wild feline predatory mammal.

$$\lambda w \lambda t \lambda x \left[\left[\left['Feline \ ['Predatory 'Mammal] \right]_{wt} x \right] \land \right] \\ \left['Domesticated_{wt} \ x] \lor ['Wild_{wt} \ x] \right] \land \left['Has - fur_{wt} \ x] \land \\ \neg ['Bark_{wt} \ x] \land \neg ['Dog_{wt} \ x] \right]$$

Algorithm diagram

Formal Conceptual Analysis - FCA

- FCA has been applied in many disciplines such as software engineering, machine learning, knowledge discovery and ontology construction.
- Informally, FCA studies how objects can be hierarchically grouped together with their mutual common attributes.
- FCA is utilized to obtain all formal concepts and create conceptual lattice over explications.
- Formal context: (G, M, I)
- The set of formal concepts:

$$\beta(G, M, I) = \{(O, A) | O \subseteq G, A \subseteq M, A^{\downarrow} = O, O^{\uparrow} = A\}$$

$$O^{\uparrow} = \{a | \forall o \in O, (o, a) \in I \}$$
$$A^{\downarrow} = \{o | \forall a \in A, (o, a) \in I \}$$

Aspirant Ordering

Definition

(1) Concept aspirants of the set of attributes **a** in $\beta(G, M, I)$ is a set $CA(a) = \bigcup_{i=1}^{n} O_i^a$, where O^a is extent of a concept $(O, A) \neq (G, B), a \subseteq A, B \subseteq M$. Namely, concept aspirants of the set of attributes **a** is a union of all formal concept extents where **a** is a subset of a particular formal concepts' intents.

Definition

(2) Let CA(a) be a set of concept aspirants of a set of attributes **a**, let $\delta(a)$ be a set of concepts (O, A) where $a \subseteq A$, i.e.: $\delta(a) = \{(O^a, (O^a)^{\uparrow})| (O^a, (O^a)^{\uparrow}) \neq (G, B), B \subseteq M, (O^a, (O^a)^{\uparrow}) \in \beta(G, M, I)\}.$ Then $\mathbf{x} \sqsubseteq \mathbf{y}$ is in relation of aspirant ordering iff $max(|(O^y)^{\uparrow}|) \leq max(|(O^x)^{\uparrow}|), x, y, \in CA(a), (O^x, (O^x)^{\uparrow}), (O^y, (O^y)^{\uparrow}) \in \delta(a).$

Most appropriate concepts

Definition

(3) Let $(CA(a), \sqsubseteq)$ be an ordered set according to the definition 2, then the maximal elements are the **most appropriate concepts**.

	a_0	a_1	a_2	a_3
o_0	1	1	0	0
o_1	0	1	1	0
02	0	1	1	1

Table: Formal context

The set of all *formal concepts* $(G,M,I) = \{ C_0, C_1, C_2, C_3, C_4 \}, \text{ where}$ $C_0 = (\{o_0, o_1, o_2\}, \{a_1\}) \quad C_1 = (\{o_0\}, \{a_0, a_1\})$ $C_2 = (\{o_1, o_2\}, \{a_1, a_2\}) \quad C_3 = (\{o_2\}, \{a_1, a_2, a_3\})$ $C_4 = (\emptyset, \{a_0, a_1, a_2, a_3\})$

Frame Title

Find the set of *concept aspirants* for attributes $a = \{a_2\}$

- **1** Find set $\delta(a)$: $\delta(a) = \{(\{o_1, o_2\}, \{a_1, a_2\}), (\{o_2\}, \{a_1, a_2, a_3\}), (\emptyset, \{a_0, a_1, a_2, a_3\})\}$
- **2** Create the union of all extents found in step 1 : $CA(\{a_2\}) = \{o_1, o_2\}$
- **3** For all $x \in CA(\{a_2\})$ calculate max of $|(O^x)^{\uparrow}|$, where $((O^x), (O^x)^{\uparrow}) \in \delta(a) \to max(|\{o_1, o_2\}^{\uparrow}|) = 2$, $max(\{|\{o_1, o_2\}^{\uparrow}|, |o_2^{\uparrow}|\}) = 3$
- 4 Order $CA(\{a_2\})$ by definition $2 \rightarrow o_2 \sqsubseteq o_1$

Table: Aspirants' ordering

	Explication	Intent	DF
	o_1	$\{a_1,a_2\}$	$\{a_1\}$
	02	$\{a_1, a_2, a_3\}$	
DF represen	ts the differenc	e from the sel	ected set of attributes.

Case study

Table: Explications and attributes

Explication (O)	Attributes (A)
Jungle cat (JC)	$\{a_1, a_2, a_3, a_4, a_5\}$
Sand cat (SC)	$\{a_1, a_2, a_4, a_6, a_7\}$
House cat (HC)	$\{a_1, a_2, a_8, a_9\}$
Lynx (Ly)	$\{a_1, a_2, a_{10}, a_{11}, a_{12}\}$
Lion (Li)	$\{a_1, a_2, a_{13}, a_{14}, a_{17}, a_{18}\}$
Tiger (Ti)	$\{a_1, a_2, a_{15}, a_{16}, a_{17}\}$
liger (11)	$\{a_1, a_2, a_{15}, a_{16}, a_{17}\}$

Table: Table of all formal concepts

-		
С	Extent	Intent
C_1	0	$\{a_1, a_2\}$
C_2	$\{JC, SC\}$	$\{a_1, a_2, a_4\}$
C_3	$\{Li, Ti\}$	$\{a_1, a_2, a_{17}\}$
C_4	$\{HC\}$	$\{a_1, a_2, a_8, a_9\}$
C_5	$\{JC\}$	$\{a_1, a_2, a_3, a_4, a_5\}$
C_6	$\{SC\}$	$\{a_1, a_2, a_4, a_6, a_7\}$
C_7	$\{Ly\}$	$\{a_1, a_2, a_{10}, a_{11}, a_{12}\}$
C_8	$\{Ti\}$	$\{a_1, a_2, a_{15}, a_{16}, a_{17}\}$
C_9	$\{Li\}$	$\{a_1, a_2, a_{13}, a_{14}, a_{17}, a_{18}\}$
C_{10}	Ø	A

Case study

Table:	Table	of all	formal	concepts
--------	-------	--------	--------	----------

a_1	'Mammal
a_2	'Hasfur
a_3	$\lambda w \lambda t \ \lambda x [[\leq [Bdlgth_{wt} \ x] \ '112] \land [\geq [Bdlght_{wt} \ x] \ '55]]$
a_4	$\lambda w \lambda t \ \lambda x \left['=_{p} \left['Furcolor_{wt} \ x \right] \ 'Brown \right]$
a_5	$\lambda w \lambda t \ \lambda x \ [' = [['Avg 'Height]_{wt} \ x] \ '36.5]$
a_6	$\lambda w \lambda t \ \lambda x [[' \leq ['Bdlgth_{wt} \ x] \ '57] \land [' \geq ['Bdlght_{wt} \ x] \ '39]]$
a_7	$\lambda w \lambda t \ \lambda x \ [' = [['Avg 'Height]_{wt} \ x] \ '27]$
a_8	'Domesticated
a_9	$\lambda w \lambda t \ \lambda x \ [' = [['Avg \ 'Height]_{wt} \ x] \ '30]$
a_{10}	$\lambda w \lambda t \ \lambda x \ [' \leq [['Avg \ 'Bdlgth]_{wt} \ x] \ '148]$
a_{11}	$\lambda w \lambda t \ \lambda x \ [' = [['Avg 'Height]_{wt} \ x] \ '75]$
a_{12}	['Biggest ['EU ['Feline 'Predator]]]
a_{13}	'Hasmane
a_{14}	$\lambda w \lambda t \ \lambda x [[\leq [Bdlgth_{wt} \ x] \ 250] \land [\geq [Bdlght_{wt} \ x] \ 170]]$
a_{15}	['Apex 'Predator]
a_{16}	$\lambda w \lambda t \ \lambda x \ [' = [['Avg 'Height]_{wt} \ x] \ '117]$
a_{17}	'Pantherinae
a_{18}	['Significant 'SexDimorph]

Case study

Chosen attribute:

$$CA(\{a_{17}\}) = \{Li, Ti\}$$

■ The set *CA*({*a*₁₇}) is ordered according to definition 2. The final ordering is as follows:

$$Li \sqsubseteq Ti$$

 According to definition 3 the entity *Ti* is is a maximal one, and thus the concept of *'being a Tiger'* is presented to the user as the most appropriate one.

Conclusion

- Symbolic method of supervised machine learning.
- Formal Conceptual Analysis over explications created by the machine learning algorithm.
- Ordering of concept aspirants using attributes properties and attributes' values known by user.
- Finding an appropriate concept.

Thank you for your attention

Marek Menšík¹, Adam Albert¹, Tomáš Michalovský²

VŠB – Technická univerzita Ostrava¹, Silesian University in Opava²

December 10, 2021