Development of HAMOD: a High Agreement Multi-lingual Outlier Detection dataset

Miloš Jakubíček, Emma Romani, Pavel Rychlý, Ondřej Herman

Natural Language Processing Centre, Faculty of Informatics, Masaryk University I Brno, Czechia Lexical Computing I Brno, Czechia Università degli Studi di Pavia, Faculty of Humanities I Pavia, Italy

RASLAN 2021: Recent Advances in Slavonic Natural Language Processing

Outline of the Presentation

- Introduction and motivation
- The word sketch-based thesaurus
- Thesaurus built from word embeddings
- Building HAMOD
- Evaluation
- Conclusions and future development

Introduction and motivation

HAMOD: High Agreement Multi-lingual Outlier Detection

- creating of a dataset for exercising the outlier detection task that aims at high inter-annotator agreement
 - outlier detection → out of a set of words, which one is the word that "does not fit" to the others (= outlier)?
 - reliable method compared to other intrinsic evaluation methods (e.g., similarity judgments → extremely low inter-annotator agreement)
- evaluating of automatic distributional thesauri with outlier detection
 - thesaurus → list of synonyms or words belonging to the same category (semantic field)
 - word sketch-based thesauri
 - word embeddings

Sketch Engine and the word sketch-based thesaurus

Word Sketch

- word sketch → short summary of a word's collocational behaviour from the perspective of individual grammatical relations (noun's modifier, verb's subject etc.)
 - 1 word sketch: headword grammatical relation collocate
 - dependency syntax graph calculated using hybrid rule-based and statistical approach
 - word sketch grammar → selects syntactically viable collocation candidates using
 CQL over morphological annotation
 - statistical scoring using word association score (LogDice: scalable association metric)

Word Sketch

Word Sketch-based thesaurus

 automatic derivation of distributional thesaurus by calculating similarity of word sketch contexts → for each word, which words share most collocates in the same grammatical relation

Word Sketch-based thesaurus

THESAURUS English Web 2013 (enTenTen13) big as adjective 9,072,553× ▼ Word Frequency ? Similarity ? ↓ Word 0.634 ... large 9,624,894 11 easy 7,048,496 ² small 9,994,762 0.576 ... 12 different 10,762,805

Thesaurus built from word embeddings

Distributional thesaurus

- calculating the vector representation for each word in a corpus (= word embedding)
- using distances between individual vectors as measure of words' (dis)similarity
 - FastText
 - Word2vec
- based on corpora in Sketch Engine → no need for part-of-speech tagging and lemmatization

Distributional thesaurus

Building HAMOD

Dataset construction

- current languages: English, Czech, Slovak, Estonian, French, German, Italian
- source dataset: English → translation/adaptation of the dataset to the other languages
 - avoid ambiguities
 - o comparable (not parallel) datasets
- 1 set:
 - 8 inliers → words that are part of a semantic category or together define a topic
 - examples: musical instruments, means of transport, fruit trees, parts of head,
 sport verbs
 - 8 outliers → words that do not belong to the category because they lack some
 relevant properties

Outlier detection exercise

- each human evaluator goes through all the sets (only once) for their native language
- 1 exercise: **8 inliers** + **1 outlier** (randomly chosen from the list of outliers for each set)
- in each turn, the evaluator selects the **outlier**
- simple web interface for the exercise

Evaluation

Inter-Annotator Agreement

- currently computed for Czech and Estonian: < 90% of absolute raw agreement
- **successful run**: an exercise where all sets were correctly fulfilled by an evaluator

Language	Success runs	All runs	Agreement	
Czech	2,082	2,150	0.97	
Estonian	3,285	3,525	0.93	

Evaluation of distributional thesauri

- **overall Accuracy** (Acc: the outlier was correctly identified?)
- Outlier Position Percentage (OPP: average percentage of the right answer)

Corpus	Corpus size	Dataset size	SkE Acc	SkE OPP	Word2Vec Acc	Word2Vec OPP
czTenTen12	5G	232	0.573	0.898	0.655	0.871
enTenTen13	22G	296	0.456	0.847	0.655	0.873
EstonianNC 17	1.3G	296	0.564	0.832	0.547	0.784
deTenTen13	19G	232	0.349	0.798	0.323	0.764
frTenTen12	6.8G	232	0.276	0.744	0.427	0.768
skTenTen11	0.6G	296	0.389	0.777	0.591	0.851
itTenTen16	5.8G	296	0.453	0.856	0.581	0.869

Conclusions and future development

Future development

- improvement of the dataset for further development, evaluation and comparison of distributional thesauri
 - extension of the dataset: 100 exercise dataset
 - covering of more languages (EU at first)
- monitoring of IAA and adjustment of the dataset accordingly → high IAA
- maintaining the discriminative power of the dataset → ability to discover differences
 between individual thesaurus types (to be revisited in case it is lost)
- optimizing distributional thesauri

thank you for listening!