
Approaching Punctuation Errors in the New
Proofreader of Czech

Vojtěch Mrkývka

Faculty of Arts, Masaryk University
Arne Nováka 1, 602 00 Brno, Czech Republic

mrkyvka@phil.muni.cz

Abstract. As the progress of a new online proofreader of Czech continues,
so does the development of particular proofreading modules that make it
whole. The position of the punctuation one is rather specific as its inner
workings differ from the usual structure. This paper focuses on the design
of the punctuation module, its specifics and obstacles which followed or
still follow its development process.

Keywords: Proofreading · Punctuation · Regular expressions

1 Introduction

The new online proofreader of Czech is a new tool developing at the Faculty of
Arts, Masaryk University since 2018. Contrary to similar products, this project
aims to (hopefully) address a broader spectrum of errors, not ending with a
spellchecker but starting with it. Using knowledge of both Czech language and
computational linguistics gained at PLIN1, the team aims to create a rule-based
system by formalising existing basic research results supplemented by own
findings. This paper will focus on one specific part of the tool – the punctuation
module, its specific nature within the proofreader and obstacles that were or yet
have to be overcome.

2 About the proofreader

Although the nature of the proofreader varied in time2, the current (and
hopefully final) solution – Plinkorektor3 – has a form of singular API with a
modular internal structure communicating with the user interface to present
results (see Fig. 1). However, the final goal for the API is to be on any specific
user interface fully independent.

As mentioned above, the API consists of multiple internal modules called
simultaneously as soon as their requirements are fulfilled (see Fig. 6). Addition-
ally, the current version allows the user to specify whether he or she wants to
1 Computational linguistics study programme at Faculty of Arts, Masaryk University
2 For more information, see my previous papers on the topic[1,2,3].
3 https://korektor.plin.cz/

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2021, pp. 107–113, 2021. © Tribun EU 2021



108 V. Mrkývka

API user interface

Text to be proofread.

Information about errors.
Fig. 1: Communication between API and the user interface.

call only a specific part of the module portfolio, omitting dependencies that are
redundant for the selection.

The team working on the API creates the detection rules for the different
types of user errors (spelling, commas, or subject-verb/subject-object grammat-
ical agreement) that need to be provided with the correction overlays. Rules,
which are the outcome of these overlays, are strongly tied to prior tokenisation
operating solely on replacement operation.

3 The punctuation module

The punctuationmodule is based on the bachelor thesis of ZbyněkMichálek [4].
It contained a detailed list of regular expressions (44 in total), which can be
used for automatic detection and correction of selected issues. These expressions
were implemented in the user interface, automatically correcting some of the
errors before calling the API. From the current point of view, this solution was
unfortunate because it added (weak)API dependency on the user interface, pre-
venting the Plinkorektor API from being fully used in a different environment.
The only logical solution was to migrate these rules to the API.

Most of the proofreading modules natively work with the tokens using
shallow parsing grammars for the SET analyser [5] to detect and mark the
problematic sequences. However, this is not the case with the punctuation
module. Asmentioned above, its determination is based on regular expressions,
so it is working with text independently of the tokens; however, the API needs
the token mapping for the correct output production. Fortunately, the match
object from Python’s re package can provide information about on which
character position the regular expression match starts, ends or both using
start(), end() or span() methods respectively. Using a pointer array, the
context of the matches could be determined easily4 (see Fig. 2). However, the
re package later showed to be insufficient, as it does not operate with POSIX
classes. Fortunately, the alternative regex package can be used in its place. The
immodest goal of the author is for regex to replace re in the future as it provides
more functions (for example, already mentioned POSIX class compatibility)
while maintaining maximum backwards compatibility with re[6]. Sadly, even
the package replacement did not fully fulfil all the needs. Although the base
of regular expressions is usually the same across the programming languages,
further nuances can make the specific expression unusable within different
4 Additional context limitation in case of some of the rules was to include additional
groups into the expressions themselves for start/end/span methods to operate with.



Approaching Punctuation Errors in the New Proofreader of Czech 109

environments. For example, for detection of space followed by a comma5
Michálek uses the expression [:blank:],; however, in Python, POSIX classes
have to be encapsulated in another pair of brackets as [[:blank:]], in this case.

0 1 2 3 4 155 6 7 8 9 10 11 12 13 14

My

0

␣

1

name

2

␣

3

is

4

␣

5

John

6

.

7

Fig. 2: An example of mapping the regular expression ([me.*n] in this case) on
tokens.

The correction rules for these expressions can be divided into two ap-
proaches, one using regular expressions only for error detection and the other
for both detection and replacement. Using the example mentioned above, the
space token can be selected using capturing group (([[:blank:]]),) and re-
moved by the simple replace with nothing rule (see Fig. 3).

Let

0

’

1

s

2

␣

3

eat

4

␣

5
,
6

␣

7

grandma

8

.

9

Let

0

’

1

s

2

␣

3

eat

4

∅

,

6

␣

7

grandma

8

.

9

Fig. 3: An example of the replace with nothing rule. The space before comma in
the sentence “Let’s eat , grandma.” is replaced with an empty string virtually
removing the space as a result.

It should be mentioned that Michálek provided replacement patterns for
all of his regular expressions; however, as the original intended usage was
5 In Czech, there should never occur space before a comma. In the position after a
comma, the space is usually present, but there is an exception for numeric expressions.



110 V. Mrkývka

different6 he uses capturing groups (if he uses them at all) for the parts of the
expression that shall be kept after correction (e.g. to be used in replacement
pattern) rather than the parts to replace. The second approach is based on using
these rules ignoring the token structure of corrections by moving the result of
the replacement pattern into the first affected token, leaving the others blank7.
However, this approach is discouraged due to problematic compatibility with
other modules, as some of the expressions can span over many tokens (see
Fig. 4).

«

0

Let

1

’

2

s

3

␣

4

eat

5
,
6

␣

7

grandma

8

.

9

»

10

“Let’s eat, grandma”

0

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Fig. 4: An example of replacing the whole quotation segment (because of
incorrect quotation marks) with single token when using regular expression
replacement rules.

As on a related problem can be looked at the Michálek’s expressions them-
selves. As mentioned, their intent was to be used strictly as automatic correc-
tion and do not always fulfil Plinkorektor needs. For example, the expression
\u00A7([:blank:]?)([0-9]) used to replace space after § for no-break space
cannot be used as is, as no-break space is part of [:blank:] POSIX class and it
would create the false-positive message. Aside from this, opinion-based issues
need to be resolved when dealing with automatic corrections, but in other cases
can be left for the user to decide. For example, Michálek uses the expression
\?\?+ to replace all cases of multiple question marks with exactly three8. How-
ever, in the case of Plinkorektor, the user can select if he or she wants to use
one or three question marks when exactly two were input. Similarly, there is a
question of whether the expression to remove additional whitespace before the
colon and the one missing after it should be treated as one issue or two separate
6 Michálek intended to use his rules solely for automatic correction of given issues,
however, the philosophy of Plinkorektor is to provide users information about which
corrections can be used as automatic but leaving the choice on them.

7 The text is retokenised every time the API is called, so the change of token structure
will not affect further API calls.

8 He works similarly with exclamation marks.



Approaching Punctuation Errors in the New Proofreader of Czech 111

ones. This can relate to the abovementioned dilemma whether use regular ex-
pressions also for the replacement purposes, as splitting of selected expressions
(or using suitable capture groups) can help keep the tokens intact (compare
Fig. 4 with Fig. 5).

«

0

Let

1

’

2

s

3

␣

4

eat

5
,
6

␣

7

grandma

8

.

9

»

10

“

0

Let

1

’

2

s

3

␣

4

eat

5

,

6

␣

7

grandma

8

.

9

”

10

Fig. 5: An example of replacing the quotation segment by parts (because of
incorrect quotation marks) with the most of the tokens left in place.

4 Common issues with the API

Lastly, there are issues with the API itself that prevent the punctuation module
from being better as part of it instead of a separate tool (for example, as part of
the user interface as it is right now). The main problem is that the current API
is still relatively slow to be entirely usable in the production environment (see
Fig. 6). Although there are still options to speed specific parts up, somemodules
will always be slower than others. The supplementary option is to give users
better ways to call parts of the API independently to, for example, check the text
with the fast modules first with additional correction by the slower modules
after they finish their processing.

5 Conclusion

The new online proofreader of Czech still has many issues that need to be
addressed, and the ongoing development of the punctuationmodule (currently
at circa 10%) is no exception. The situation presented above and the whole of
the Plinkorektor issues can be summarised as quantity over difficulty situation,
meaning there is a minimal number of problems, which can be considered hard.
However, easy ones come in such quantity that progress is not always optimal.
On the other hand, looking at the overall work done versus to be done, the
production-wise usable product is undoubtedly just around the corner.



112 V. Mrkývka

TOTAL TIME 0.00s 15.99s
unitok (tokenization) 1.30s 1.32s

MorphoDiTa (morph. analysis) 1.79s 2.19s
Agreement module 2.71s 5.46s

Commas (MorphoDiTa) module 2.71s 5.02s

majka + desamb (morph. analysis) 1.83s 5.45s
Dependent clauses module 5.68s 8.53s
Pronouns (svuj2pl) module 5.68s 10.28s

Nongramatical structures module 5.69s 8.09s
Pronouns (ni) module 5.69s 8.99s

Pronouns (svuj1pl) module 5.69s 10.11s
Other mistakes module 5.69s 8.92s

Commas (majka) module 5.70s 9.46s
Capital letters module 5.70s 12.10s

Pronouns (nasi/moji) module 5.71s 8.17s
Pronouns (svuj1sg) module 5.71s 9.67s
Pronouns (svuj2sg) module 5.71s 10.12s

Pronouns (ji) module 5.72s 10.15s

No morphological analysis 1.89s 2.03s
Preposition vocalisation module 2.42s 4.10s

Spelling module 2.43s 15.35s
Punctuation module (WIP) 2.46s 3.63s

Time
0s 5s 10s 15s

Fig. 6: Runtime of different modules in the API.

Acknowledgements. The work was supported by the project of specific re-
search Gramatika a lexikon češtiny (Grammar and lexicon of Czech; project no.
MUNI/A/1181/2020).

References
1. Mrkývka, V.: Webové rozhraní pro automatický jazykový korektor češtiny [online].

Diplomová práce, Masarykova univerzita, Filozofická fakulta, Brno (2018 [2021-10-
28])

2. Mrkývka, V.: Towards the New Czech Grammar-checker. In Horák, A., Rychlý, P.,
Rambousek, A., eds.: Proceedings of the Twelfth Workshop on Recent Advances in
Slavonic Natural Languages Processing, RASLAN 2018, Brno, Masaryk University
(2018) 3–8

3. Mrkývka, V.: Recent Advancements of the New Online Proofreader of Czech. In
Horák, A., Rychlý, P., Rambousek, A., eds.: Proceedings of the Thirteenth Workshop
on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2019, Brno,
Masaryk University (2019) 43–47



Approaching Punctuation Errors in the New Proofreader of Czech 113

4. Michálek, Z.: Algoritmizace hromadných oprav vybraných typograficko-
pravopisných jevů českého jazyka [online]. Bakalářská práce, Masarykova univerzita,
Filozofická fakulta, Brno (2016 [2021-10-28])

5. Kovář, V., Horák, A., Jakubíček, M.: Syntactic Analysis Using Finite Patterns: A New
Parsing System forCzech. In:HumanLanguageTechnology. Challenges forComputer
Science and Linguistics, Berlin/Heidelberg, Springer (2011) 161–171

6. Barnett, M.: regex · pypi [online] (2021 [2021-10-28])


