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Abstract. This work summarises recent progress in generalization evalua-
tion and training of deep neural networks, categorized in data-centric and
model-centric overviews. Grounded in the results of the referenced work,
we propose three future directions towards reaching higher robustness of
language models to an unknown domain or its adaptation to an existing
domain of interest. In the example propositions that practically comple-
ment each of the directions, we introduce novel ideas of a) dynamic objec-
tive selection, b) language modeling respecting the token similarities to
the ground truth and c) a framework of additive component of the loss
utilizing the well-performing generalization measures.

Keywords: Generalization · Debiasing · Domain extrapolation · Domain
adaptation · Domain robustness · Neural language models

“Education is the most powerful weapon we can use to change the world.“
Nelson Mandela

1 Introduction

Deep language models have found their application in a wide variety of tasks,
ranging among other aspects in their semantic complexity and a domain of
applicability. While a domain of some applications can be bound, commonly,
we can not afford to utilize a specialized model for every possible domain, i.e., a
set of samples of which we apply the language model, conditioned by a distinct
situational and pragmatic background. Furthermore, our domains of interest
might not even be preliminary known, as is often the native case in generative
tasks, such as neural machine translation, summarization, or paraphrasing;
think, for example, of a variety of domains forwhich a general-purposemachine
translation system can be applied.

The exceeded reliance of the models on characteristics of a single training
domain shows as an increasing problem only with an increased expressivity
of the deep architectures, which are for the first time able to accurately model
the non-representative relations not easily apparent to their maintainer. As one
of the first, McCoy [24] demonstrates a reliance of state-of-the-art transformer
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model on heuristical shortcuts on language inference [42], specifically on a lexi-
cal and subsequence overlap between the premise and hypothesis. Belinkov [2]
and Berard [4] show fragility of neural machine translationmodels to typos and
misspelling, and vocabulary shift, respectively, both common for non-canonical
domains that the systems are usually not trained on. A large branch of work fol-
lows, either in aims to empirically identify domain-specific biases in commonly-
used data sets [39,14,29,16], or in aims to heuristically eliminate these biases in
data [24,27,48].

This paper brings an introductory overview of the limited set of existing
methods that address the qualitative discrepancy of applying the model to
samples of different domain(s), regardless of the specific type of domain shift
between the training and target domain.

Section 2, overviews the existing methods based on resampling the training
domain samples or exposing the domain shift by using the data from two
different domains. Further, in Section 3, we extend this list for a domain that
adjust the standard training process via adjusting the objective of the training
process.

Finally, in Section 4 we outline the open ends implied by the results of the
preceding studies, which could lead to an enhancement of the model’s domain
robustness. We aim to describe these common directions tangibly enough to
be utilizable in future research. We thoroughly describe a single technical
proposition for each of the three outlined directions and leave its empirical
evaluation to the subsequent studies.

2 Extrapolation using Data

Data approaches aim to utilize the available samples, possibly categorized
by their domain of origin, in order to minimize test loss on samples of the
domain of interest. In the scope of a well-recognized branch of work labeled
as domain adaptation, the training situation is denoted by the availability of
source domain 𝑋𝑠, which can be interpreted as a random variable generating
the samples 𝑥𝑠 with their corresponding labels 𝑦𝑠. Further we denote a target
domain 𝑋𝑡, i.e. a domain of application, with a limited amount of (𝑥𝑡, 𝑦𝑡) ∈ 𝑋𝑡,
where it holds that |𝑋𝑡| < |𝑋𝑠|, or in some situations,where the amount of 𝑦𝑡 ∈ 𝑋𝑡
is limited.

In themore extreme case referred in the literature as an evaluation for domain
generalization, we restrict the training process to access only samples of source
domain(s) 𝑋𝑠, and the samples of 𝑋𝑡 are a priori unavailable. Arguably, this
situation better corresponds to open-domain applications such as openmachine
translation.

2.1 Impact of Data Subsampling

Data Selection approaches aim to resample the samples used for the training
process in order to maximize the generalization ability of the eventual model.
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Denoising strategies elaborate on a hypothesis that some samples are less rep-
resentative to the task of interest than others. Among more straightforward
approaches, Lin [22] picks the “clean” set of samples according to their per-
plexity to the linear base model, keeping in the training set only the ones with
low perplexity. Later, Moore [25] seeks to pick the samples 𝑥𝑠 that minimally
affect the sum log-likelihood of the model updated according to 𝑥𝑠. Similarly,
Yarowsky [45] pick the training subsample based on a threshold on the sample
output confidence. Zhou [49] iteratively applies the same strategy using an en-
semble of three estimators, only picking the top-n most-confident samples, pos-
sibly avoiding the mangle confidence calibration, and refers to this approach to
as tri-training.

An interesting, yet more complex approach, referred to as Product-of-Experts
is introduced by [15]. Here, an ensemble of relatively small classifiers is used
to debias the training samples by computing a dot product of class-wise logits
of the ensemble and possibly discarding the samples for which the ensemble
disagrees the most. Sanh [33] applies this approach to the training transformers
model and finds interesting performance gains on out-of-domain performance.
Similarly, Utama [39] identify the possibly-biased samples as the ones reaching
high confidence only for a single one of the ensembledmodels and consecutively
weights the training samples by their chance of exposing bias. In the broader
scope, these approaches fit well into the PAC-Bayesian framework [40], roughly
stating that if for the selected model 𝑀 empirical error bound 𝜖𝑀, then for the
error for an ensemble 𝐸 of such models it holds that 𝜖𝐸 ≤ 𝜖𝑀.

2.2 Ability to Distinguish Domains

Another approach to domain generalization leads through an exposition of the
domain discrepancies, which is a necessary precondition for the model to
comprehend and possibly to model it. This is theoretically supported by the
work of Locatello [23], concluding that distributional robustness is not possible
without the exposition of both data and model inductive biases. Bengio [3]
demonstrates how these biases can be utilized by the model to fit the causal
structure of the data and evaluate this ability in the situation where the data-
specific inductive biases are known.

There are simpler ways how domain discrepancies can be effectively com-
municated to the model. For example, Shah [34] minimizes the Wasserstein
distance of internal model representations between the samples of source and
target domain, 𝑋𝑠 and 𝑋𝑡. Jiang [17] first trains the domain classifier 𝐶𝑑 dis-
tinguishing domains 𝑋𝑠 and 𝑋𝑡 and subsequently weights the samples 𝑥𝑠 ∈ 𝑋𝑠
in the training by their correspondence to 𝑋𝑡 as given by the confidence of 𝐶𝑑.
Chadha [5] enhances out-of-domain performance of adapted model by adding
so-called maximum mean discrepancy loss to the training objective, given by
max(dist(𝑥𝑠, 𝑥𝑡)) ∶ 𝑥𝑠 ∈ 𝑋𝑠, 𝑥𝑡 ∈ 𝑋𝑡.
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3 Extrapolation and Training Process

The adjustments to the training process have proved to increase the distribu-
tional robustness of the final model in different variations. We identify that the
authors of empirically-successful works in generalization use the regularization
element, which corresponds to a specific well-performing generalization mea-
sure. Hence, we first describe popular evaluation measures and then describe
the specific adjustments of the training process leading to a model with better
generalization.

3.1 Evaluation of Extrapolation

In a large-scale study on image classification, Jiang [18] shows that the mea-
sures of so-called spectral graph complexity [28], sharpness of the parametrized
space [19], or PAC-Bayesian measures [40], similar to the introduced Product-
of-Experts, correlate the highest to the empirical out-of-domain performance of
the convolutional model. Later, Dziugaite [11] dispute some of these results,
reproducing the experiments in enhanced, fine-grained methodology, showing
that the high average correlations of some measures, such as the spectral com-
plexity, systematically fail under specific domain shifts.

Perhaps surprisingly, these studies agree upon the low correlations of the
standard regularization techniques such as dropout or norms regularization,
suggesting that an application of techniques sufficient to avoid in-domain
overfitting might not be sufficient for reaching distributional robustness.

3.2 Training Process Adjustments

A large branch of studies shows that regularizing the training process using
the referenced generalization measures positively impacts the distributional
robustness of the model. However, note that most of the following studies
were applied in evaluating image classification, with questionable relevance to
transfer learning settings.

Barlett [1] uses spectral complexity as a norm in the training process of
the AlexNet convolutional network and theoretically demonstrates that this
property corresponds to the network generalization ability. Similarly, Foret [12]
uses sharpness as an additive term of loss, computed on locally-surrounding
inputs as an additive component of the training loss. In addition to increasing
out-of-domain accuracy, the resulting model demonstrates higher robustness
to noisy training in-domain samples. Referring to the process as “debiasing”,
Utama [39] utilize the commonly-evaluated PAC Bayesian confidence estimate
in predictions in loss weighting.

Other adjustments give some insights into the impact of the composition
of transfer learning objectives. While Teney [37] or Wang [26] demonstrate the
cases where adaptation to a single domain harms out-of-distribution robustness
of themodel,Wu [43] concludes that adapting tomultiple data sets can enhance
the end model generalization. Additionally, Tu [38] reporting a positive impact
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of multitask learning to model’s out-of-distribution accuracy, or by Xie [44] for
additive consistency regularization in the training objective.

4 Future Perspectives

Grounded in the referenced studies and results, we nowdescribe three potential
directions that could mitigate the exposition of inductive biases in the language
models and, consequently, reach their higher generalization ability. We enrich
each one of these directions with a practical proposition that contributes to the
described direction.

Overall, we observe that the strategy of interaction with a model during the
training has a significant impact on the model’s generalization ability, just like
the teacher’s methods and interaction have a principal effect on the student’s
performance. All of the introduced directions elaborate on interaction strategies
towards the model on training time.

4.1 Impact of Objectives Curricula

“If we examine ourselves, we see that our faculties grow in such a manner that
what goes before paves the way for what comes after.” J. A. Comenius [8]

While many of the mentioned studies, for example, [5,43,38] enrich the training
objective with an exposition of the domain discrepancies and their respective
biases with reported positive impact to generalization, it is not clear how the
specific strategies of doing so vary in effectiveness and efficiency. For instance,
Gururangan [13] concludes that it is always beneficial to perform a fine-tuning
to a domain or a task of interest by sequentially applying the different objectives,
Tu [38] apply a concurrent objective schedule. Additionally, as some objectives
might be easier than others, it is likely that some objectives overweight others
over time, mitigating the further convergence, possibly necessary for learning
the corner cases [38].

We propose to systematically enhance our comprehension of the perfor-
mance of models in the different objectives: do we somewhat loose grasp of
a general language understanding, reflected, for example, in Masked or Causal
language modeling accuracy [10,31], or Denoising [21], when fine-tuning for a
token or sequence classification on end task? If this degradation is significant,
as suggested, for example, by the results of Popel [30], it motivates the results
for a more complicated schedule of an application of objectives.

If a fine-tuning on end objective degrade performance of other relevant objectives, we
are motivated to utilize a non-sequential schedule of these objectives in the common
adaptations.
Wepropose to confront a standard sequential schedule of the optimization of

the objectivewith the novel ones.We aim to investigate at least the two strategies
outlined in Figure 1: a “striped” schedule strategy,where the loss of all objectives
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Fig. 1: Illustrative comparison of basic objective sampling strategies. Tradition-
ally, domain adaptation is performed in sequential strategy (a). Presumably, a
combined sampling strategy (b), could avoidperformance decay of the unsched-
uled, yet relevant objective(s), as reported for instance by Popel [30]. A dynamic
sampling (c), based for example on a state of the validation loss, could further
eliminate this performance decay.

is included in each training step, and a candidate of the groups of “dynamic”
strategies, where the objective selection is determined by a heuristic based on
the immediate loss of given objective.

4.2 Softer Objectives

“The proper education of the young does not consist in stuffing their heads
with a mass of words, sentences, and ideas dragged together out of various
authors, but in opening up their understanding to the outer world, so that a

living stream may flow from their own minds, just as leaves, flowers, and fruit
spring from the bud on a tree.” J. A. Comenius [8]

The continuous over-parametrization of deep language models brings qualita-
tive gains even by following the same, well-established objectives on the same,
limited amount of training resources of end tasks, as shown for instance by
[10,9]. Still, it makes sense to askwhether the commonly-used objectives expose
the characteristics of the learned task in an efficientmanner, both with respect to
the computational resources and often expensive supervised data resources.

Consider the cases of Masked, or Causal language modeling, where 15%
of randomly-selected tokens is masked. Presuming the Zipf law holding for
the natural language artifacts in all its levels (from morphology to semantic of,
e.g., coreference or entity recognition), the chance of exploiting the long tail of
less common artifacts remains long underrepresented. On the other hand, an
exposition of the trivial artifacts, e.g., a resolution of the correct pronoun, when
the referenced subject is already referenced in the unmasked segment, occurs
commonly.
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Fig. 2: Instead of using the cross-entropy (CE) exact-matching objectives, we
propose to elaborate into using “soft” objectives, able to distinguish between the
different levels of inexactmatching.As an example,we propose to compute a loss
of sequence-to-sequence training objective irrespective of the relative ordering
of the tokens in the reference and hypothesis. Similar to the evaluation of
Zhang [46], the objective would first find the best-possible matching between
two sets of tokens based on the token embeddings, and only then computes the
value of the loss as a sum of minimal possible distances of every token in the
hypothesis. Note that such objective is still differentiable on a sequence level.

We should ask whether the commonly-used objectives expose the full variety of the
learned task in an efficient manner, as the efficiency will always be a qualitative
bottleneck for many low-resource or domain-specific applications.
The inefficiency, as well as the potential of objectives improvement, is ex-

ploited by the approach of ELECTRA model [7]. ELECTRA uses a simpler lan-
guagemodel to exchange somewords in the pre-training corpora. The language
model is trained to distinguish the synthetically-exchanged tokens in the token
classification objective instead of using the classic MLM objective. Using this ap-
proach, authors report 30x speedup of convergence while reaching very similar
performance on a set of GLUE [41] tasks.

Another significant work in this direction is the one of Szegedy et al. [36],
which introduces commonly-used Label smoothing nowadays. In this training
strategy, the “true” distribution of labels to which the model’s loss is computed
is not discrete, i.e., in the form of a one-hot vector of a size of several classes |𝐶|.
Instead, it has a form of a vector with the values of 𝜖

|𝐶| on the positions of non-
expected category, and a value of 1 − 𝜖 on the true-category position, where
𝜖 remains a free parameter, usually set in ⟨0.05; 2⟩. Such smoothing of the
objective is shown tominimize in-domain test error [36] and can improvemodel
generalization ability [6].

These results motivate us to revisit the commonly-used objectives, where
a speed of convergence and generalization can be defining factors of model’s
end quality, for instance, in a neural machine translation of under-resourced
languages or non-canonical domains [32].

We follow with a brief motivational introduction to the problem and a
proposition of one specific machine translation objective following the call for
softer objectives. The approach is also summarised in Figure 2.
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The standard neural machine translation objective is to minimise the cross-
entropy (CE) loss between an expected pseudo-probabilistic distribution over
model’s vocabulary, for each token 𝑃𝐸

𝑖 given by the model, and a true token
𝑦′

𝑖 ∈ 𝑌𝑇 given by a set of reference translations. 𝑃𝐸 is conditioned by both the tokens
of the source sequence 𝑥1…𝑛 and the previous tokens 𝑦1…𝑛−1. The cross-entropy
token-level loss ℒ is then defined as:

ℒ(𝑋, 𝑦′
1…𝑛) =

|𝑛|
∑
𝑖=1

CE(𝑃𝐸
𝑖 (𝑋, 𝑦′

1…𝑖−1), 𝑦′
𝑖) .

Utilising ℒ in the training process, the model is trained to predict all 𝑃𝐸
𝑖 any

unknown 𝑋, but compared to the training, on inference, 𝑃𝐸
𝑖 is conditioned by the

previously-predicted tokens 𝑦1…𝑖−1 instead of the tokens of the reference 𝑦′
1…𝑖−1.

Among other aspects, ℒ implies that if the model generates one extra
token or omits one token at the beginning of generation, all the subsequently-
generated tokens will be sanctioned the same as if the model generated the
remaining output randomly. A similar penalization is backpropagated if the
model fully paraphrases the reference. Such a loss originmight arguably cause the
model to overfit the syntax of the training domain, or might be the reason why
the other objectives, such as Denoising [21] significantly enhance a fluency of
output, as compared to the described Causal languagemodeling, as in GPT [31].

One of the simple approaches to eliminate this problem is to start with
picking a reference token 𝑦′

𝑗 which is best-matching to the evaluated 𝑥𝑖. A separate,
discriminative language model can provide the representations of the matched
tokens, similarly to [7]. The pairwise distance of the tokens can be estimated
using the max-product approach as proposed in BERTScore [47], using the
many-to-many matching utilizing Wasserstein distance [20], or using any other
differentiable token-level distance measure.

4.3 Objectives Utilizing Generalization Measures

“What we demand is vigilance and attention on the part of the master
and the pupils.” J. A. Comenius [8]

A relatively specific direction towards higher robustness of language models is
outlined by the works utilizing the approximations of measures that correlate
well with empirical out-of-distribution performance. These works overviews
Section 3.2. Even though some of the incorporatedmeasures do not consistently
correlate to out-of-distribution performance, from a limited number of the
referenced applications, it seems that the model is always able to utilize the
adjacent information efficiently.

Task-specific training objectives can be extended with an additive compo-
nent, in a form outlined in Equation (1).

ℒ(𝑀) = (1 − 𝛼)ℒObj(𝑀) + 𝛼ℒMeas(𝑀) (1)
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To enhance model’s distributional robustness, a task-specific training objective ℒObj
can be additively complemented with a differentiable instance of the generalization
measure ℒMeas.
The measures that highly correlate with out-of-distribution accuracy of the

model can be utilized to effectively regularize the final objective ℒ favouring the
property associated with distributional robustness. We overview some of such
generalization measures in Section 3.1.

We identify two challenges in training objective design. The first one is in
designing a differentiable and computationally-feasible approximation of the
generalization measure. Foret [12] demonstrates that the valuation of sharp-
ness of the parametrized space requires a valuation for all the inputs of the
parametrized, application-dependent distance. It is not clear if a similar repre-
sentative valuation would be feasible in the NLP domain.

The second challenge lies in designing the evaluation measures well-corre-
lated with out-of-distribution performance and their representative evaluation.
For example, Dziugaite [11] shows that the measures that correlate highly in
one context might correlate poorly under different shifts. A representative eval-
uation of the generalization ability of the measure requires identification of all
valid biases, which is not feasible, implying that the evaluation of generalization
measures will remain merely the point estimates of unknown shift.

We can still escape this uncertainty in designing the generalizationmeasures
reflecting the features of the problem, which we intuitively consider to be
invariant to the data domain or problem on hand. Such features could, for
instance, reflect the shared linguistic properties of the natural language.

5 Conclusion
This work outlines the three directions of addressing the unwanted data biases
of languagemodels, which is an extensively reported problem inherently raised
from the expressivity of the deep models.

We aim tomotivate the research in these three directions, providing a shared
framework and referencing the current work showing initial, promising results.

We acknowledge that there might be multiple unforeseen obstacles in any
proposed directions that will only identify in practice. We argue that any
contribution towardsmore robust languagemodels has immediate implications
for most of the applications in the NLP field. Many of the commonly-used
solutions already rely on transformers and can even be seen to expose unknown,
notorious biases, as shown, e.g., in [35].At the same time, a limited extrapolation
ability of the models remains a blocker for applying modern NLP in more niche
domains, where little annotated data is available due to the size or audience
background.
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