

Efficient Management and Optimization of Very Large Machine Learning Dataset for Question Answering

<u>Marek Medveď</u> <u>Radoslav Sabol</u> Aleš Horák xmedved1@fi.muni.cz, xsabol@fi.muni.cz, hales@fi.muni.cz

NLP Centre, Faculty of Informatics, Masaryk University

December 7, 2020

- transparent Python-object persistence (database) system
- stores selected data models (especially classes and objects in the Python)
- store huge hierarchical structures that are not limited to one data type

SQAD to ZODB

- SQAD database transformed into ZODB system (main storage of all the dataset data)
- ZODB allows fast access to the SQAD data and efficiently stores all data from the SQAD database raw records in the final form required by the AQA question answering system
- allows direct access to data differs from standard approach
- stores Python objects without a need of extra format conversion
- stores the complete SQAD database records

SQAD record No. 012878

Original text: Ngoni (někdy též n'goni) je strunný hudební nástroj oblíbený v západní Africe. ... [Ngoni (also called n'goni) is a string musical instrument popular in west Africa.] **Question**: Jakého typu je hudební nástroj ngoni? [What kind of musical instrument is ngoni?] Answer: strunný hudební nástroj [string musical instrument] **URL**: https://cs.wikipedia.org/wiki/Ngoni Author: login **Question type**: ADJ PHRASE Answer type: OTHER Answer selection: Ngoni (někdy též n'goni) je strunný hudební nástroj oblíbený v západní Africe. Answer extraction: strunný hudební nástroj

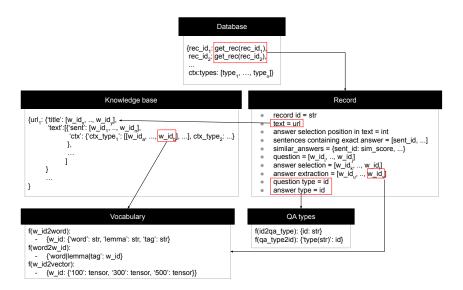
Additional features

- word vectors to boost the training procedure in the AQA answer selection module the new SQAD-ZODB database stores pre-computed word vectors pre-trained from large Czech corpora using the word2vec algorithm.
- list of sentences containing exact answer during building SQAD-ZODB, the list of sentences that contain the exact answer is computed. This information is then used in the evaluation process of the answer selection module.
- list of similar answers boost the module ability to identify the correct answer within a list of very similar sentences.
- answer context to supplement the neural network decision process,an information about the sentence context is provided to the answer selection module. The SQAD-ZODB database contains several types of context pre-computed from the original data.

SQAD-ZODB context

- previous sentences the context of N full sentences is added to each input article sentence.
- phrases from previous sentences using the rule-based SET parser, the system is able to identify all possible noun phrases within each sentence. *M* noun phrases from each of *N* preceding sentences are stored as the second context type.
- "link named entities" from previous sentences form the third type of sentence context.

Link named entities


- LNEs are defined as entities that are labeled with Wikipedia internal links
- inside each Wikipedia article, links that refer to other Wikipedia articles identify entities which are often significant in denoting an important piece of information
- named-entity recognition (NER) system https://github.com/kamalkraj/BERT-NER
- final module is applied on SQAD data and provides information about recognized link named entities which are used as a sentence context

Link named entities - training data

word	NE tag	
přestoupil O		
do	0	
Sparty	В	
Praha	I	

- 0 regular word
- B beginning of named entity,
- I continuation of named entity.

SQAD-ZODB architecture

• Efficient Management and Optimization of Very Large QA Dataset • RASLAN 2020

SQAD-ZODB architecture (DATABASE object)

- first level, the SQAD-ZODB database stores all records IDs and a function that builds the record content form 4 database parts (tables)
- Record

SQAD-ZODB architecture (Record object)

- Record ID unique identifier of a SQAD record
- Text variable contains a unique URL that points to specific article inside the Knowledge base table (de-duplication)
- Answer selection position stores an index of the sentence that contains the expected answer
- Sentences containing exact answer is a list of sentence IDs that contain the exact answer
- Similar answers list of similar sentences with their similarity scores
- Question, answer selection and answer extraction lists of words IDs. Each word ID can be transformed into word, lemma, POS tag, 100-, 300- or 500-dimensional vector using the *Vocabulary table*.
- question type and answer type IDs pointing to specific question and answer type using the QA types table.

[•] Efficient Management and Optimization of Very Large QA Dataset • RASLAN 2020

SQAD-ZODB architecture (Knowledge base object)

- stores all articles used within the SQAD database
- avoid duplicates
- stores only list of the words IDs compact size while maintaining all important information

Updating the SQAD-ZODB Database

- transaction support in ZODB
- each new feature is designed as standalone script that can supplement the database with a single new feature of each record
- list of available transformation scripts:
 - sqad2zodb
 - add_similar_sentences
 - add_sentences_containing_exact_answer
 - context_previous_sentences
 - context_noun_phrases
 - context_ner

SQAD-ZODB Performance

 direct access to required information - saves time and amount of transfered data

Representation	Disk usage
Plain text	1,312.89 GB
Pickle	240.20 GB
SQAD-ZODB	25.08 GB

SQAD-ZODB Performance

Preloaded vocabul	ary
init	12.44
W	13.21
l	2.02
t	1.42
v1	4.78
v3	2.61
v5	2.61
w;l;t;v1;v3;v5	4.03

15/25

SQAD-ZODB over Network

- SQAD-ZODB database was implemented within the ZEO¹ (Zope Enterprise Objects) library that allows to run the database in the client-server mode over network
- hyperparameter optimization of large amount of training setups

¹www.zodb.org/en/latest/articles/old-guide/zeo.html

[•] Efficient Management and Optimization of Very Large QA Dataset • RASLAN 2020

Optuna

- recent hyperparameter optimization framework
- highly scalable
- supports multiple database engines (SQLite, PostreSQL, MySQL)
- define-by-run API allows adjustments to hyperparameter ranges across runs
- built-in support for pruning

Comparison of HP Optimization Frameworks

Framework	API Style	Pruning	Lightweight	Distributed	Dashboard	OSS
SMAC [3]	define-and-run	×	1	×	×	1
GPyOpt	define-and-run	×	1	×	×	1
Spearmint [2]	define-and-run	×	1	1	×	1
Hyperopt [1]	define-and-run	×	1	1	×	1
Autotune [4]	define-and-run	1	×	1	1	×
Vizier [5]	define-and-run	1	×	1	1	×
Katib	define-and-run	1	×	1	1	1
Tune [7]	define-and-run	1	×	1	1	1
Optuna (this work)	define-by-run	1	1	1	1	1

Figure: Comparison of hyperparameter optimization frameworks in terms of available features.

²Source: https://arxiv.org/pdf/1907.10902.pdf

• Efficient Management and Optimization of Very Large QA Dataset • RASLAN 2020

18/25

2

Optuna and AQA Answer Selection

- AQA Answer Selection's hyperparameter search space is getting increasingly more complicated as more new features/parameters are added to the module
- hyperparameter optimization methods used for AQA before Optuna:
 - Grid Search: performance requirements increase exponentially with each added hyperparameter
 - Manual Search: works well, but cannot be automated easily :-)
- for abovementioned reasons Optuna was integrated into Answer Selection as an automated method of optimizing the hyperparameters

Search Space Definition

Table: Hyperparameter values search space for the answer selection model

Hyperparameter name	Optuna distribution used	Range of values	
BiGRU hidden size	discrete uniform	100-600 with the step of 20	
Dropout	discrete uniform	0.0-0.6 with the step of 0.1	
Batch size	categorical	1, 2, 4, 8, 16, 32, 64, 128, 256	
Optimizer	categorical	Adam, Adagrad, Adadelta, SGD	
Learning rate	logarithmic uniform	from 10^{-4} to 10^{-1}	
Embedding dimension	categorical	300, 500	

Setup Details

- PostresSQL database used as storage for trial results
- all trials were computed remotely on Metacentrum machines
 - training data was transferred either locally with ZODB or over network with ZEO
- pruning of unpromising trials with **MedianPruner**
 - prune trial if it's validation accuracy at epoch e is worse than median of validation accuracies of previous trials at epoch e
- Tree Parsen Estimators (TPE) used as optimization mechanism

Results

- 1506 trials were trained
 - 455 were succesful, 365 were pruned, and the rest has crashed due to GPU OOM errors
- the best run reaches the MAP of 83.13 %
 - an increase of 0.8 %
- the new best hyperparameter setup
 - **Embedding Dimension:** 300
 - **Dropout Probability:** 0.3
 - Optimizer: Adagrad
 - Batch Size: 4
 - Learning Rate: 0.0042
 - BiGRU Hidden Size: 520

Results

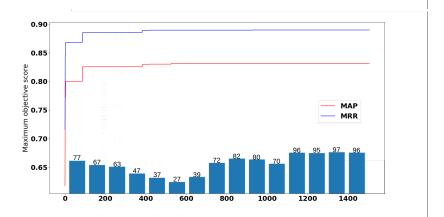


Figure: Incrase in MAP and MRR during all 1,506 recorded runs. Histogram below depicts the number of pruned runs

Conclusion and Future Work

- managing the efficient storage and data transfer of very large QA dataset
- Optuna improves model MAP of about 1%

Future work:

- test new types of context
- decrease the amount of erroneous trials in optimization eliminate the bias towards lower embedding dimensions

Thank You for Your Attention!

MUNI FACULTY OF INFORMATICS