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Introduction

Summaries

Type: Abstract and. Extract

Length: Indicative and Informative

Task: Single/Multi-document,

Actualization, Comparative...

Why do we want summaries?
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Summec

Summec - Count Methods

Heuristic methods

remove Stop list
sentence position
sentence length
count of words

TFxIDF

score(sent) =
∑

t∈sent
tf (t)× idf (t,D) (1)

Extract the best scoring sentences
What do they contains? Repetitive information?
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Summec

Summec - From Counts to Space

Every dimension represents one
term.

Sentence is combination of
terms.

~si =
∑

t∈si ~vt

The longest sentence is the most
informative.

What is the second best
sentence?

dim1

dim2
s1

s2s3

s4s5
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The Curse of Dimensionality

Vector model

The Curse of Dimensionality - spares high dimensional space

Heuristic selection

Stop list
Lemmatization
Synonyms

Data transformation

Matrix reduction - Latent Semantic Analysis
Random projection - Random Manhattan Indexing

Neural network - Skip-gram model (word2vec)
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The Curse of Dimensionality

Latent Semantic Analysis

Latent Semantic Analysis

Term-Document matrix A decomposed by SVD.
Dimensions with the lowest variance are throws away.

=A

t x s t x m m x m m x s

U Σ VT

t x k k x k k x s

Uk Σk VT
k≈

Uk - reduced matrix of term vectors
VT

k - reduced matrix of sentence vectors
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The Curse of Dimensionality

Latent Semantic Analysis

Summarization - Evaluation data

Experiment: Generate Informative Extract of Article

Test data:

50 Czech newspaper articles

15 annotators

informative extract (25 % of original text)
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The Curse of Dimensionality

Latent Semantic Analysis

Summec - Scheme & Results

preprocessing
modules

summarization
modules

Web page

Desktop application

Summec
Web page with

summary

XML file with
summary

summary
representation

parsed
text

output
summaryinput

parsing

input
data

method
ROUGE-1

Recall [%] Prec. [%] F-score [%]

Heuristic 57.2 54.3 55.3

TFxIDF 62.6 53.3 57.3

LSA 55.4 55.2 55.1
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New methods

New vector generation methods

Skip-gram model (word2vec)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.:
Distributed representations of words and phrases and their
compositionality. In: Advances in Neural Information Processing
Systems. (2013)

Random Manhattan Indexing
Zadeh, B.Q., Handschuh, S.: Random manhattan indexing. In:
Proceedings - International Workshop on Database and Expert
Systems Applications, DEXA. (2014) 203–208
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New methods

Random Manhattan Indexing

Random Manhattan Indexing

Advantage of Random Projection - Euclidian distance

Not suitable for text vectors → Manhattan distance

d2

d1
t2

q

t1

d2

d1
t2

q
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New methods

Random Manhattan Indexing

Random Manhattan Indexing - algorithm

1 Extract index terms from text

2 Generate vector to each index term (2)

vi =


−1
U1

with prob. s
2

0 with prob. 1− s
1
U2

with prob. s
2

s =
1√
β|{t}|

(2)

3 Compute sentence vector (3)

~sj =
∑
t∈sj

~vt (3)
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New methods

Skip-gram model

Skip-gram model

input word

context

projection

w(t)

w(t-2) w(t-1) w(t+1) w(t+2)

Objective function: maximize value of (4)

1

T

∑
t∈T

∑
−c≤j≤c,j 6=0

log(p(wt+j |wt)) (4)
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New methods

Skip-gram model

Results

Training data:
RMI - 706 033 (1 025 815) lemmas
SGM - 8.6 GB lemmatized ASR training data

Table: Comparison of ROUGE-1 score of summarization methods

method Recall [%] Precision [%] F-score [%]

LSA 55.4 55.1 55.2

RMI 50.7 56.7 53.3

SGM 50.7 56.7 53.3

TFxIDF 62.6 53.3 57.3
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Conclusion

Conclusion

Proposed schemes do not perform better than TFxIDF.

TFxIDF is still the best performing method.

RMI - poor results are understandable (random vectors)

SGM - high expectations - maybe different approach
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Conclusion

Current Work, Future Paper?

Sentences are not sufficient - long and without context.
Example:
Title: Věci Věrejné krituzij́ı akreditačńı komisi za zvěrejněńı
usneseńı.
Extract: Podle ńı má komise povinnost svá rozhodnut́ı zvěrejňovat

a u tohoto sledovaného p̌ŕıpadu chtěla rychlým vyjáďreńım p̌redej́ıt

spekulaćım.

Extracting clauses is more interesting way.
Podle Dvǒrákové má komise povinnost zvěrejňovat svá rozhodnut́ı.
Dvǒráková chtěla p̌redej́ıt spekulaćım u tohoto sledovaného p̌ŕıpadu
rychlým vyjáďreńım.

(Tento p̌ŕıpad = Maj́ı se rušit plzeňská práva)
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Conclusion

Summec and Aara

Summec + Aara = Sumara

Evaluate Aara’s accuracy.

How to evaluate abstract? Read and mark vs. automatic
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Discussion

The End

Thank you for attention
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