AST: New Tool for Logical Analysis of Sentences
based on Transparent Intensional Logic

Marek Medved’ and Ales Hordk

Natural Language Processing Centre,
Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00, Brno, Czech Republic

{xmedvedl, hales}@fi.muni.cz

Abstract. Logical analysis of natural language is able to extract semantic
relations that follow the underlying logical formalism. Transparent Inten-
sional Logic (TIL) has been designed to capture even high-order relations
between sentence elements and systematically work with all kinds of lan-
guage references, i.e. extensions, intensions and hyperintensions.

In this paper, we introduce the first version of a new tool, called AST,
for automatic semantic analysis of sentence. This tool is based on the TIL
logic processing rules as they were implemented in the SYNT parser, in
its logical analysis module. AST thus shares lexicons and semantic rules
in the same format as in the SYNT parser, but allows to build upon the
output of other syntactic parsers. AST is designed as a universal semantic
analysis tool, which strictly separates the application logic and input data
and strives for language independent analysis.

Within the evaluation, we present preliminary results of testing AST on
selected problematic phenomena, which were not correctly processed by
the SYNT logical analysis.

Keywords: semantics; semantic analysis; logical analysis; Transparent
Intensional Logic; TIL

1 Introduction

Full semantic analysis of natural language (NL) texts still remains an open
problem, although the problem is being partially solved from different points of
view. The most comprehensive semantic systems build upon a mathematically
sound formalism of a selected logical system. Mostly due to computability
and efficiency, current systems work with the first order logic (or its variant).
However, the low-order logic is not appropriate for capturing higher-order
phenomena that occurs in natural language, such as belief attitudes, direct
speech, or verb tenses [6].

In the following text, we present a new tool for automatic semantic analysis
(AST) that emerged from (a module of) the Czech syntactic parser SYNT [3].
AST is now available as a standalone tool that is independent from the SYNT
parser. AST works with the same input files (lexicons, semantic rules, ...) that

Ale$ Horék, Pavel Rychly, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2015, pp. 95-102, 2015. (© Tribun EU 2015

96 Marek Medved’ and Ales Horak

<tree>
{##tstart##
{start
{ss
{clause
{VL<leaf><idx>0</idx><w>Jedl</w>
<1>jist</1><c>kbeAalgMnS</c></leaf>}
{intr
{adjp
{ADJ<leaf><idx>1</idx><w>pe&ené</w>
<1>peleny</1><c>k2eAgNnSc4</c></leaf>}
}
{np
{N<leaf><idx>2</idx><w>kure</w>
<1>kutre</1><c>k1gNnSc4</c></leaf>}
}
}
}
}
{ends
{?.7<leaf><idx>3</idx><w>.</w><1>.</1><c>kX</c></leaf> }
}
}
}

</tree>

Fig. 1. Syntactic tree — text markup for “Jedl pecené kute.” (He ate a roasted chicken.)

were designed and developed in SYNT. AST can thus provide the semantic
analysis in the form of Transparent Intensional Logic (TIL) constructions [1]
independently on the input syntactic parser and language. Processing new
language thus consists in a specification of four lexicon files that describe lexical
items, verb valencies, prepositional valencies and a semantic grammar.

In the following sections, we describe the structure of the system, the
language dependent files and the form of required input as processed by a
syntactic parser.

2 The AST System

In this section, we introduce the main parts of the AST system, describe the
content of language dependent files and formalize the required input of AST.
21 The AST Input

To create a semantic structure of a sentence, AST needs the output from
previous NL analysis levels. A usual output is in the form of a syntactic tree

AST: New Tool for Logical Analysis of Sentences based on TIL 97

<##start##>

<start>

,’/\

<ss> <ends>
<c|al|Jse> <'!'>

<VL> <np> |
Je|dl <left_modif> <np>
<AI|DJ> <|l|>
peé|<ené ku|Fe

Fig. 2. Syntactic tree — visual for “Jedl pecené kufe.” (He ate a roasted chicken.)

as provided by a syntactic parser. See Figure 1 for an example of a syntactic
tree that is accepted as the AST input. The corresponding graphical tree
representation is in Figure 2.

Besides the tree nodes and edges, the tree contains morphological informa-
tion about each word: a lemma and a PoS tag [4], which are used by AST for
deriving implicit out-of-vocabulary type information.

2.2 Language Dependent Files

The AST system itself is universal and can be used for semantic analysis of any
language. However the main system core also uses input files that are language
dependent and that need to be modified for addition of another language. In
this section, we describe the format of those files needed to build the resulting
logical construction.

The Semantic Grammar The resulting semantic construction is built by
bottom-up analysis based on the input syntactic tree provided by the syntactic
parser and by a semantic extension of the actual grammar used in the parsing
process. To know which rule was used by the parser, AST needs the semantic
grammar file. This file contains specification of semantic actions that need
to be done before propagation of particular node constructions to the higher
level in the syntactic tree. The semantic actions define what logical functions
correspond to each particular syntactic rule. For instance, the <np> node in
Figure 1 corresponds to the rule and action:

np -> left_modif np
rule_schema ("[#1,#2]")

98 Marek Medved’ and Ales Horak

rule_schema: 2 nterms, °’[#1,#2]°
1, 3, +np -> . left_modif np . @level O
nterm 1: 1, 2, +left_modif -> . left_modifnl . @level 0, k2eAgNnSc4d

TIL: Opeceny. .. ((0t),y,(01)1,)
nterm 2: 2, 3, +np -> . N . @level O, kigNnSc4
TIL: kufe. .. (o),

Processing schema with params:

#1: Opeceny. .. ((0t)y,(00))
#2: Okure...(01),,

Resulting constructions:

[Opeceny/((0t) 1, (00) 1) s Ckure/(01) .1 (0) 1,

Fig. 3. Analysis of the expression “pecené kufe” (roasted chicken).

which says that the resulting logical construction of the left-hand side np is
obtained as a (logical) application of the left_modif (sub)construction to the
right-hand side np (sub)construction. An example of processing such grammar
rule is in Figure 3.

TIL Types of Lexical Items The second language dependent file defines lexical
items and their TIL types. The types are hierarchically built from four simple
TIL types [2]:

o: representing the truth-values,

t: class of individuals,

T: class of time moments, and

w: class of possible worlds.

AST contains rules for deriving implicit types based on PoS tags of the input
words, so as the lexicons must prescribe the type only for cases that differ from

s

the implicit definition. A lexical item example for the verb “jist” (eat) is:

jist
/k5/0triv (((0(007w) (007w))w)t)

The exact format of the lexical item in the input file is as follows: the lemma
starts on a separate line. After the lemma there is a list of lines where an
(optional) POS tag filter precedes the resulting object schema (here otriv, i.e.
o-trivialisation) and TIL type (here verbal object with one i-argument).

AST: New Tool for Logical Analysis of Sentences based on TIL 99

Verb Valencies The next language dependent file is a file that defines verb
valencies and schema and type information for building the resulting construc-
tion from the corresponding valency frame. An example for the verb “jist” (eat)
is as follows

jist

hPTc4 :exists:V(v):V(v):and:V(v)=[[#0,try(#1)],V(w)]

This record defines the valency of <somebody> eats <something>, given by the
brief valency frame hPTc4 of the object (an animate or inanimate noun phrase in
accusative), and the resulting construction of the verbal object (V(v)) derived as
an application of the verb (#0) to its argument (the sentence object) with possible
extensification (try(#1)) and the appropriate possible world variable (V(w)).

Prepositional Valency Expressions The last file that has to be specified for
each language is a list of semantic mappings of prepositional phrases to
valency expressions based on the head preposition. The file contains for each
combination of a preposition and a grammatical case of the included noun
phrase all possible valency slots corresponding to the prepositional phrase. For
instance, the record for the preposition “k” (to) is displayed as

k
3 hA hH

saying that “k” can introduce prepositional phrase of a where-to direction hA
(e.g. “k lesu” — "to a forest"), or a modal how/what specification hH (e.g. “k veceri”
—“to a dinner”).

2.3 System parts

The AST system is implemented in the Python 2.7 programming language and
consists of six main parts:

— the input parser: reads standard input, extracts tree structures and creates
tree object for each tree from input,

— the grammar parser: reads the grammar file and assigns a grammar rule and
appropriate actions to each node inside the tree,

— the lexical item parser: reads the file with lexical item schemata and TIL types
and assigns the type to each leaf in the tree structure,

— the schema parser: according to a logical construction schema coming with a
semantic action, this module creates a construction from sub-constructions,

— the verb valency parser: picks up the correct valency for given sentence and
triggers the schema parser on sub-constructions according to the schema
coming with the valency, and

— the prepositional valency expression parser: reads the possible valency expres-
sions assigned to prepositional phrases used as (optional) valency slots in
the actual sentence valency frame.

100 Marek Medved” and Ales Horak
3 Error Analysis

During the AST development, AST is continuously evaluated in comparison
with the original SYNT TIL logical analysis. In these tests, a number of
uncovered phenomena is described and implemented in AST. The number of
NL constructs covered by the AST logical analysis is thus still growing and,
already in the current version, surpasses the original logical analysis.

In the following paragraphs, we present the results of error analysis of
selected 200 sentences and the corresponding problems related to the original
analyses of these sentences.

3.1 Sentences with Two Items Divided by “and”
The construction for the following sentence:

Vidite zdsadnéjsi rozdily mezi ptistupy Ceskiyjch a zdpadnich informacnich firem?
(Can you see the main difference between Czech and west information companies?)

is (schematically) analysed as [zapadni, [Zesky, x8]] and [firma, x8].!
This means that both words “zdpadni” (west) and “Ceskiy” (Czech) are modifiers
of the word “firma” (company) which is not correct. The correct analysis for this
sentence is [zapadni, x8] and [firma,x8] and [Cesky, x9] and [firma,
x9] .2

3.2 Verb Valency vs. Clause Valency

The concluding clause semantic construction is created according to the content
of the syntactic tree of the clause. The clause valency (valencies) is built from
the subtrees, and in the next step the clause valency is matched to the verb
valency from lexicon and the schema assigned to the verb valency is used
for creating the clause logical construction. However, if the system creates an
incorrect clause valency or the verb valency has no suitable option, the clause
construction is not created and the resulting semantic analysis is void.
In the analysis of the following sentence

MozZnd, Ze se tito lidé ani nesetkali.
(Maybe, these people never met each other.)

the clause schema does not contain the reflexive pronoun “se””?, so the system

finds only the verb valency for the word “setkat” (meet), which does not contain
suitable schema for semantic analysis.

! transl. [west, [Czech, x8]] and [company, x8].
2 transl. [west, x8] and [company,x8] and [Czech, x9] and [company, x9].
3 here in the meaning of “each other”

AST: New Tool for Logical Analysis of Sentences based on TIL 101

Table 1. 200 sentences evaluated by the SYNT TIL system and the AST system.

system correct correct in % incorrect incorrect in %
SYNTTIL 131 65.5 % 69 35.5%
AST 158 79.0 % 42 21.0 %

3.3 Verb Valency Schema Update

In some cases, the clause valency is created correctly but the verb valency file
does not contain an option that can match with the created cause valency. To
solve this type of problems, AST files must be updated to add new option for
the missing verb valency to create the correct semantic analysis.

3.4 Verb Valency Schema Missing

The verb valency list is created from the Czech VerbaLex lexicon [5], which is a
large database of more than 10,000 Czech verb lemmata and their verb frames.
However, it can happen that some verbs are not included in VerbaLex thus the
system does not contain the verb frame.

In the test data, there were three verbs that are not included in VerbaLex,
that it why they have been added to the AST verb list.

3.5 System errors

The previous SYNT TIL analysis contains a construction checker that does not
allow the dash character “-” in the name of an object construction, such as
[0(Si-an/1)] (a proper name). In such case, the construction is rejected and
the semantic analysis fails. The AST analysis allows such object naming, so the
analysis can continue successfully.

4 Evaluation

In this section, the AST system is compared with the original SYNT TIL logical
module. For evaluation, we have picked up 200 randomly chosen sentences that
were processed by both systems and the resulting analysis for each sentence
was manually checked. For the final results, that shows 14 % improvement of
AST to SYNT TIL, see Table 1.

5 Conclusions

In this paper, we have introduced new language and parser independent tool
for semantic analysis, called AST, thatis based on the SYNT TIL logical analysis.
The new AST system is designed as a lightweight standalone module, that can
be straightforwardly updated and improved. Already in the first version AST

102 Marek Medved’ and Ales Horak

corrects several frequent errors of its predecessor, and presents a 14 % increase
in the number of correctly analyzed sentences.

This new implementation of semantic analysis brings the necessary simplic-
ity for future development and parser and language independence.

Acknowledgements This work has been partly supported by the Czech
Science Foundation under the project GA15-13277S.

References

1. Duzi, Marie and Jespersen, Bjorn and Materna, Pavel, Procedural Semantics for
Hyperintensional Logic: Foundations and Applications of Transparent Intensional
Logic, Springer Science & Business Media (2010)

2. Horédk, Ales: Types in Transparent Intensional Logic and Easel — a Comparison,
Proceedings of the IASTED International Conference Artificial Intelligence and
Applications, 833-837 (2004)

3. Horak, Ale$ and Jakubi¢ek, Milos and Kovéf, Vojtéch: Linguistic Logical Analysis
of Direct Speech, RASLAN 2012 Recent Advances in Slavonic Natural Language
Processing, 51-59 (2012)

4. Jakubitek, Milo$ and Kovat, Vojtéch and Smerk, Pavel: Czech Morphological Tagset
Revisited, Proceedings of Recent Advances in Slavonic Natural Language Processing,
29-42 (2011)

5. Nevéftilova, Zuzana and Grac, Marek : Common Sense Inference using Verb Valency
Frames, In Proceedings of 15th International Conference on Text, Speech and Dia-
logue, 328-335 (2012)

6. Tichy, Pavel: The Foundations of Frege’s Logic. de Gruyter, Berlin, New York (1988)

