
Portable Lexical Analysis for Parsing of
Morphologically-Rich Languages

Marek Medved’ and Miloš Jakubíček

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{xmedved1,jak}@fi.muni.cz

Abstract. In this paper we present new approach to lexical analysis in the
Synt parser. We describe three fast lexical analyzers we have exploited
for lexical analysis and advantages of the re2c fast lexical analyzer in
comparison to others. This paper shows a new lexical analysis workflow
which is both easy to maintain and portable to new languages. Finally
we provide an evaluation of the new lexical analysis against the original
lexical analysis.

Key words: lexical analysis, synt parser

1 Introduction

Any parser that is not fully lexicalized (i.e. operates on some – fine or coarse
grained – categories of words) must deal with the issue of performing the
lexical analysis – mapping of words into the respective categories – before it can
actually perform any parsing. For analytical languages the mapping procedure
may be very simple and may boil down to the mapping to part-of-speech
categories, however for wide-coverage parsers dealing with morphologically-
rich languages, this is not the case. For those it holds that precise and complex
(fine-grained) lexical analysis is the starting point for a successful syntactic
analysis.

As with any hand-written rule system, one has to decide what formalism
is optimal for designing and developing the lexical analysis. We hereby list the
requirements for both of these based on our past experience – the formalism for
development of the lexical analysis should be:

– simple to edit and maintain for language specialists
– easily portable to new languages
– expressive enough so as to be appropriate for the task

As for the actual execution of the lexical analysis (i.e. evaluation of the
mappings on particular input), there is a single straightforward condition in
place: it must be fast enough so as not to harm the speed of the parser.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2013, pp. 21–26, 2013. c○ Tribun EU 2013



22 Marek Medved’ and Miloš Jakubíček

In this paper we present a new approach to lexical analysis in the Czech
parser Synt[1,2] that satisfies the conditions listed above. At first we describe
the former lexical analysis in the parser and its deficiencies, then we discuss
possible alternatives that we exploited and finally we describe in detail the new
approach based on a re2c-generated lexical scanner.

2 The Synt parser

Syntactic analyzer Synt has been developed over the past years in the Natural
Language Processing Centre at Faculty of Informatics, Masaryk University.
The Synt parser is based on a context-free backbone enhanced with contextual
actions and performs a stochastic agenda-based head-driven chart analysis.

The input of Synt is a sentence morphologically annotated by the morpho-
logical analyzer Ajka[3] which uses an attributive tagset described in [4]1.

The lexical analysis follows immediately after loading an input sentence
and its morphological annotation. In the context of a phrase-structure grammar,
the lexical analysis provides mapping from words to the so called pre-terminals
– non-terminal leaves which are directly rewritten to the surface word in the
resulting syntactic tree. Therefore correct assignment of a word’s pre-terminal
is crucial for the analysis to succeed.

After the lexical analysis, the Synt parser proceeds with two-step parsing:
first with a basic context-free analysis of the sentence and then with evaluation
of complex contextual actions finally producing one of the possible outputs,
which might be:

– a phrase-structure tree
This is the main output of Synt and consists of a set of phrase-structure
trees ordered according to the tree ranking. The system makes it possible to
retrieve n-best trees effectively.

– a dependency graph
A dependency graph represents a packed structure which can be utilized
to extract all possible dependency trees. It is created by using the head and
dependency markers that might be tied with each rule in the grammar.

– set of syntactic structures
The input sentence is decomposed into a set of unambiguous syntactic
structures chosen by the user.

3 Lexical analysis

In the current Czech grammar used in Synt the lexical analysis exploited
the following token properties to be able to assign the pre-terminal correctly:
the word itself, its lemma and its morphological tag, mainly the part-of-
speech including its subclassification as provided by the Majka morphological
analyser.

1 Current version of the tagset is available online at http:///nlp.fi.muni.cz/ma/.



Portable Lexical Analysis for Parsing of Morph.-Rich Languages 23

3.1 Tools

The former implementation was based on a hard-coded C module that simu-
lated a decision tree operating on the three features (word, lemma, tag) used
for the task. This approach, while being very efficient during the execution
of the lexical analysis, suffered from several obvious drawbacks, the biggest
one being that good knowledge of the system and programming skills were re-
quired in order to be able to develop the lexical analysis module, which made
it practically impossible for a linguist specialist to do the task. Another, rather
more engineering complications, included the necessity for special handling of
wide-character strings and the fact that manual maintenance of a hand-written
decision tree is quite error-prone.

For all these reasons we decided to replace the current lexical analysis
module with a better formalism without the deficiencies listed above. We
concluded that from the user perspective the mapping should be maintained
“as is” in the most natural form consisting of lines mapping the word, lemma,
tag triple to the pre-terminal. For this task, we tried to exploit three available
tools for automatic generation of lexical scanners/analyzers – the lex2, flex3 and
re2c4.

A lexical scanner is a program which recognizes lexical patterns in text and
after it matches a lexical pattern it executes an associated action. Input for
all three tools is a description of the scanner in the form of pairs of regular
expressions and C code actions, called rules. The output is then the generated
scanner in the form of a C source file.

Lexical analysis:

"January" -> MONTH

Metagramar rule:

adv -> NUMBER ’.’ MONTH

Fig. 1: Principle of lexical analysis

From these three tools we first ruled out the lex because of its limited
support for Unicode character set (wide/multibyte character strings). From the
remaining two, flex and re2c, the latter one turned out to be much faster and
hence our implementation is based on that one.

2 Current version of lex is available online at http://dinosaur.compilertools.net/
lex/.

3 Current version of flex is available online at http://flex.sourceforge.net/.
4 Current version of re2c is available online at http://re2c.org/.



24 Marek Medved’ and Miloš Jakubíček

def scan(string){

------ macro part ------

IS_NUMBER = [0-9]+;

...

------ rule part ------

.*"\t".*"\t"{IS_NUMBER}"\t" {

------ action ------

preterm=NUM;

}

...

}

def analyze(input_str){

scan(input_str);

}

Fig. 2: Input for re2c and flex

3.2 New formalism for lexical analysis

The Synt parser can be used for many languages. The problem is that lot of
language specialists (linguists) have basic or no skills in programing. Because of
that we decided to create a preprocessing script that converts an input mapping
definition file into a re2c source file. The definition file is a simple plain text file
containing lines with lexical rules mapping a tag-, lemma- and word-triple to
the respective pre-terminal.

Apart of the mapping lines, the definition file may contain comments
and macros that are expanded in the mapping lines. Comment lines start
with #=, macro lines take the format m=Macro RegularExpresion (replace any
Macro instances with RegularExpression in the mapping lines (see example in
Figure 3).

#=top comment

m=IS_NUMBER [0-9]+ #=line comment

Fig. 3: Macro example with user comments

The lexical rule (exemplified in Figure 4) contains two parts: the first part
describes the pattern to be matched and the second part is action to be executed
upon the first part is successfully matched. The first part of the lexical rule
contains tag, lemma and word in this order. The tag, lemma and word are
regular expressions where predefined macros can be used, finally the 4th field
(second part of the lexical rule) is the action prescribing the pre-terminal to



Portable Lexical Analysis for Parsing of Morph.-Rich Languages 25

be assigned (though it might be a short C snippet too). All the fields are tab-
separated.

#=top comment

.* {IS_MONTH} .* preterm=MONTH #=line comment

Fig. 4: Lexical rule example with user comments

In the lexical rules and macros predefined variables for word, lemma, tag,
word index (denoted as wi) and lemma index (denoted as li) might be used
– word, lemma and tag variables contain the respective input fields, the word
(lemma) index is an integer representing word (lemma) position in the input
sentence. For example if one wants to write a lexical rule for words that do not
occur at the first position of the sentence, the following lexical rule might be
appropriate:

"k1".* .* {ONLY_FIRST_UPPER} if(wi>0){preterm=NPR;}

Fig. 5: Lexical rule with predefined variables

4 Evaluation

Hereby we provide both a comparison of flex and re2c scanner generation
and the actual speed of running the lexical analysis on a sample set of 6,160
sentences (see Table 1). From this evaluation it follows that the new lexical
analysis system is not only easier to maintain and more portable, but also
slightly faster than its hard-coded predecessor.

Table 1: Time of generating scanner from description of scanner
Lexical analyzer Time of scanner generation
flex 22.9 min
re2c 2.5 min

Time of syntactic analysis with old and new lexical analysis

Lexical analyzer Lexical analysis time
original Synt lexer 3.33 min
re2c 3.19 min



26 Marek Medved’ and Miloš Jakubíček

5 Conclusions

In this paper we have presented new lexical analysis used in the Czech parser
Synt. We have discussed in detail the motivation behind this work: to have
a portable, easy to maintain and fast to evaluate formalism for mapping input
tokens to grammatical pre-terminals. We are convinced that the new approach
based on the re2c lexical scanner will help us to port the parser to new
languages faster and will be also less error-prone.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013.

References

1. Kadlec, V.: Syntactic analysis of natural languages based on context-free grammar
backbone. PhD thesis, Fakulta informatiky, Masarykova univerzita, Brno (2007)

2. Jakubíček, M., Horák, A., Kovář, V.: Mining phrases from syntactic analysis. In: Text,
Speech and Dialogue. (2009) 124–130

3. Šmerk, P.: Fast Morphological Analysis of Czech. In: Proceedings of the Raslan
Workshop 2009, Brno (2009)

4. Jakubíček, M., Kovář, V., Šmerk, P.: Czech Morphological Tagset Revisited. Proceed-
ings of Recent Advances in Slavonic Natural Language Processing 2011 (2011) 29–42


