
DICTIONARY MANAGEMENT SYSTEM FOR THE DEB
DEVELOPMENT PLATFORM

Aleš Horák, Adam Rambousek
Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

hales@fi.muni.cz, xrambous@fi.muni.cz

Keywords: electronic dictionaries; dictionary management; dictionary writing system; DEB development platform.

Abstract: In the paper, we introduce new dictionary management interface for design, preparation and presentation of
generic electronic XML dictionaries using the DEB (Dictionary Editing and Browsing) development platform.
The DEB platform provides a strict client-server environment for general dictionary writing systems. So
far several successful NLP tools have been implemented on this platform, one of the most known being the
DEBVisDic tool for wordnet semantic network editing and visualization.
This paper describes a new part of the DEB platform – the Administration interface that is shared by all DEB
applications running on one server machine.

1 INTRODUCTION

The usage of electronic dictionary resources in the
computational linguistics has increased several times
during the last decade due to evident reasons: 1)
the computer equipment has reached such high state
that it is feasible to process giga bytes of textual
data (Graff, 2003), and 2) the effectiveness gain is
enormous when compared to the previous types of
slow “manual” processing of linguistic information.

Despite this fact, the list of generally available
dictionary writing systems (DWS) is not very wide
– we may refer to e.g. Longman Dictionary Publish-
ing System (McNamara, 2003), TshwaneLex (Joffe
and de Schryver, 2004) or the Dictionary Editor and
Browser (DEB) (Horák et al., 2006; Horák and Pala,
2006). All the cited systems are based on XML
databases that allow to capture practically any kind
of structural data including monolingual and transla-
tional dictionaries, thesauri or encyclopediae. Long-
man DPS and TshwaneLex are self contained com-
mercial applications that are designed for specific
purposes – Longman DPS is used in the publishing
house to bring out traditional paper based dictionar-
ies as well as new electronic and on-line products.
TshwaneLex on the other hand is a dictionary compi-
lation system that allows to create and maintain sev-

eral dictionary styles for various purposes. Both these
systems are distributed on a commercial base.

The third system, the DEB platform, is an open
source and freely available development framework
developed at the Natural language processing Centre
at Masaryk University, Czech Republic. The system
provides strict client server architecture for design of
completely versatile dictionary applications. In next
sections, we shortly summarize the features of the
system as a whole and then describe its new compo-
nent, the Administration interface that is used by all
client applications.

2 THE DEB DEVELOPMENT
PLATFORM

The Dictionary Editor and Browser was first de-
signed as a standalone program for writing dictionar-
ies. After several problems with adaptation of the
tool for coming new requirements, the second ver-
sion, sometimes referred to as DEBII , became a com-
plete rewrite of the system based on open standards.



2.1 General Features

The most important property of the system is the
client-servernature of all DEB applications. This
provides the ability of distributed authoring teams to
work fluently on one common data source. The ac-
tual development of applications within the DEB plat-
form can be divided into the server part (the server
side functionality) and the client part (graphical inter-
faces with only basic functionality). The server part is
built from small parts, calledservlets, which allow a
modular composition of all services. The client appli-
cations communicate with servlets using the standard
web protocol HTTP.

Since the data on the server is stored in XML,
the actual data storage backend is provided by Berke-
ley DB XML (Chaudhri et al., 2003), which is an
open source native XML database providing XPath
and XQuery access into a set of document containers.

The user interface, that form the most important
part of a client application, usually consists of a set
of flexible forms that dynamically cooperate with the
server parts. According to this requirement, DEB
has adopted the concepts of the Mozilla Development
Platform (Feldt, 2007). Firefox Web browser is one
of the many applications created using this platform.
The Mozilla Cross Platform Engine provides a clear
separation between application logic and definition,
presentation and language-specific texts.

2.2 Current Client Applications

Current development of the DEB platform includes
implementation of several real-life dictionary applica-
tions. We will shortly summarize the main ones here.

DEBDict general dictionary browser. This DEB
client was first implemented as a demonstration appli-
cation, however, during two year it has evolved into a
central base of more than ten different large dictionar-
ies with remote access users all over the world. The
main features of DEBDict include:

• multilingual user interface (English, Czech, oth-
ers can be easily added)

• queries to several XML dictionaries and encyclo-
pediae (of different underlying structure) with the
result passed through an XSLT transformation

• connection to Czech morphological analyzer

• connections to external websites (Google, An-
swers.com, Wikipedia)

• connection to a geographical information system
(display of geographical links directly on their po-

sitions within a cartographic map) or any similar
application

The current version of DEBDict provides a common
interface to 11 dictionaries – 6 different dictionaries
of Czech language, 3 Oxford English dictionaries, the
Diderot Encyclopedia and the CIA World Factbook.
All together these dictionaries offer searching of more
then million dictionary entries of various styles.

DEBVisDic – complete new version of the success-
ful wordnet semantic network editor and browser Vis-
Dic. Following its predecessor, DEBVisDic offers
important qualities for design and preparation of mul-
tilingual WordNet semantic networks. VisDic was
used as a main tool in the EuroWordNet (EuroWord-
Net, 1999) and Balkanet (Balkanet, 2002) projects
where wordnets for 13 languages were developed.

DEBVisDic extends the list of functions neces-
sary for wordnet editing like synset preview, two-
directional graph browsing for synset relations or
complex queries. New functionality offers a new win-
dowed interface and remote team work capabilities.
Important features are brought together with the new
Administration interface described in this paper.

Currently, DEBVisDic is also used for preparation
of new Polish, Hungarian, Slovenian and Afrikaans
wordnets and it is proposed as the main tool for the
prepared Global WordNet Grid.

PRALED is designed for the development of the
Czech Lexical Database, CLD (Klı́mová et al., 2005).
The PRALED client is used in the Institute of Czech
Language, Czech Academy of Sciences (Prague) as a
dictionary writing system for building CLD which is a
large project planned for about 6 years from now. The
goal is to develop a lexical database of contemporary
Czech containing approximately 100.000 entries. An
important new feature here is that PRALED will be
linked to the Manatee/Bonito corpus manager and the
Word Sketch Engine.

DEB CPA Corpus Pattern Analysis (CPA, (Hanks,
2004)) is a new technique for mapping meaning to
words in text. No attempt is made in CPA to iden-
tify the meaning of a verb or noun directly, as a word
in isolation. Instead, meanings are associated with
prototypical sentence contexts. Concordance lines are
grouped into semantically motivated syntagmatic pat-
terns. Associating a “meaning” with each pattern is a
secondary step, carried out in close coordination with
the assignment of concordance lines to patterns.

CPA editing tool displays the list of verb entries,
along with the information who and when updated



Figure 1: User management showing how access rights modify the dictionary list in DEBDict; list for selected user is on the
left, list of all dictionaries is on the right.

the entry. Each entry consist of several patterns (the
number of patterns is not limited) and it is possible to
freely modify their order and content. The main part
of the tool, the pattern editing window, allows to en-
ter and modify all the information about one pattern.
Examples documenting the pattern are taken from
the British National Corpus using a modified version
of Bonito corpus manager and the Word Sketch En-
gine (Kilgarriff et al., 2004) that is integrated to the
DEB CPA tool.

Cornetto The Cornetto project (STE05039) is
funded by the Nederlandse Taalunie in the STEVIN
framework. The goal is to build a lexical seman-
tic database for Dutch, covering 40K entries, includ-
ing the most generic and central part of the lan-
guage. Cornetto will combine the structures of both
the Princeton Wordnet and FrameNet for English,
by combining and aligning two existing semantic re-
sources for Dutch: the Dutch wordnet and the Refer-
entie Bestand Nederlands.

Since the lexicographic work on the Cornetto
project consists in expert aligning and merging of two
independent Dutch resource together with linking the
data to the Princeton Wordnet, the project uses spe-
cific application implemented on top of the DEBVis-
Dic tool.

3 THE NEW ADMINISTRATION
INTERFACE

Initially, DEB server was developed with just
command-line management of dictionaries and ad-
ministration of user passwords for authentication.
The configuration was realized by structured text files
and data processing scripts.

After DEBVisDic has spread to more users world-
wide and has been used for building several na-
tional Wordnets (Polish, Hungarian, Slovenian or
Afrikaans), a more sophisticated administration inter-
face for DEBVisDic users and dictionaries was cre-
ated. Later on, this interface was transformed to more
general and complex dictionary management applica-
tion for the whole DEB server.

3.1 Overall Design Goals

The DEB server packages are currently being de-
ployed on several servers in different organizations
and often more than one user need to administer a sin-
gle DEB server without having a direct server access.
Thus, the administration interface must be accessi-
ble remotely and without any special tools. The best
choice for this task is a web-based interface, where



the user needs just a web browser.

The interface should support easy administration
of all the server areas. Of course, the main area of a
dictionary management server is the dictionary man-
agement. Each dictionary is described with several
basic attributes, like its name and code, the filename
of its storage in the DB XML database, its dictionary
type, the XML schema or indexed elements or XSLT
templates for output displaying. Also, some projects
may need extra specific settings – e.g. the DEBVis-
Dic clients need to store information about the inter-
dictionary links. After the dictionary is set up, the
interface has to support import and export of XML
data into and from the DB XML format.

When the administrator sets up the server dictio-
naries, these can be grouped to “services.” A service
is one individual part of the DEB server, usually used
for one particular project. For example, DEBVisDic
or DEBDict are separate services, but they share the
same base libraries and management database. Sev-
eral services can access the same dictionaries, each
providing different view on the data.

The user accounts are shared between all the ser-
vices. Thanks to the database sharing between ser-
vices, each user needs just one account for all the ser-
vices he or she may use. The administrator can re-
strict access to selected services and for each service,
more detailed access permissions can be set for each
dictionary (read-only, read-write, update, . . . ). The
actual usage of the dictionary access permissions de-
pends solely on the service. This means, one service
can ignore permissions at all and another service can
use complex access rights.

Apart from access rights, the user account man-
agement provides all the needed functions – it allows
to create, modify and delete user accounts. Each user
can log-in to the administration interface and change
his or her password. In case the user forgets a pass-
word, he or sher can ask for a new random password.

To ease the deployment of the DEB platform,
we are experimenting with automated creation of the
client applications. Now, the server is able to create
straightforward applications based on the Relax NG
Schema (van der Vlist, 2003) of the dictionary, and
we are aiming at automated creation of client pack-
ages for new national Wordnets.

Another very useful feature is uploading of files
onto the server using the web interface. This way, the
administrator can easily modify web page templates
(XSLT) or other files without the need of direct (FTP,
SSH) access to the server.

3.2 The Implementation

The server administration interface is based on the
same postulates as the other DEB server dictionaries
and modules. The Berkeley DB XML database pro-
vides a storage backend for the administration meta-
data. The server-side scripts are developed in Ruby
programming language.

All the data about users, dictionaries, permissions
and other control data are stored in the DB XML
database in the XML format. Each dictionary module
of the DEB server uses a common interface to access
data from this administration database.

Example 1XML entry for the user from the Figure 1
<user>
<login>adam</login>
<name>Adam Rambousek</name>
<email>xrambous@fi.muni.cz</email>
<org>Faculty of Informatics</org>
<addr>Botanicka 68a, Brno</addr>
<pass>3Ja8ivX12OB0U</pass>
<services><service code="debdict">
<dict code="scs" perm="r"/>
<dict code="scfis" perm="r"/>
<dict code="cia" perm="r"/>
<dict code="scfin" perm="r"/>
<dict code="diderot" perm="r"/>

</service></services>
</user>

The administration module provides several ser-
vices – user authentication, access rights control, en-
try locking and journaling of dictionary changes.

The administration interface is a web-based appli-
cation where the web pages are generated using an
HTTP template which allows easy design and content
modification and then served to the users by a light-
weight web server – WEBrick (Santoso, 2004). The
users are authenticated using standard HTTP authen-
tication mechanism. The administration module ex-
tends the standard interface for passwords stored in
a file and loads user’s login and password from the
XML database. Each change in user accounts or ac-
cess rights is propagated to all DEB services in the
real-time.

3.2.1 The Dictionary Management

For each dictionary, the administrator has to define
several attributes (see the Figure 2). The minimal
set of attributes contains a unique dictionary code, a
database filename and a dictionary class (the imple-
mentation class), the other attributes are more or less



Figure 2: Dictionary management showing basic informationand indexed elements for the Czech Wordnet dictionary.

optional. The meaning of the dictionary attributes is:

• The dictionary name is displayed to users by the
client application.

• The definition of the XML entry root tag and its
key element are needed for XML import and for
searching (in case, the application does not have
its own, more complex search method).

• Indexes speed up search operations, so each el-
ement or attribute that is used in user queries
should be indexed.

• The XSLT templates transform XML data to an-
other form suitable for presentation or machine
processing.

Extra dictionary attributes are required for the DE-
BVisDic dictionaries:

• Each DEBVisDic dictionary is linked to the client
software by the client package code.

• The DEBVisDic Dictionaries can reference to
each other using “equivalence tags.”

• In the next field, the administrator can enter dic-
tionaries that should be reloaded after an edit ac-
tion in the client (usually in another dictionary).

• And the last option specifies related dictionaries
– for example, several national Wordnets linked
with ILI (Inter-Lingual Index). It is possible to

display the same entry in different languages or to
copy entries between languages.

3.2.2 Import and Export

The import function takes an XML file and stores
the data into the DB XML database. The XML file
has to be uploaded to the server (it is possible to up-
load it through web interface). All entries must share
the same root tag (specified in the dictionary man-
agement), entries with different root tags are ignored.
The administrator can choose if he or she wants to
delete all the entries from database before the import
or just add the new entries. The import utilizes two
methods for XML reading. The first method loads the
whole XML file into memory and uses an XML parser
on the big document. This method is accurate, unfor-
tunately it has exponential time complexity, so it can
take hours for large XML files (over 10 MB). The sec-
ond method uses regular expressions to read entries
one by one from the XML file and then each single
entry is parsed. Entries are stored in the database with
value of the specified key tag as a unique key. The ad-
ministrator is informed about the import progress on
the web page – a number of processed entries, a total
number of entries, an estimated time till the end and
last ten entry keys are displayed.

The administration module also supports export



from database to plain XML file, the output files may
be compressed to save disk space. The export also
has an option to save the file in the form of a Ruby
language script that will setup the database and im-
port initial data. This is needed for the administration
database itself. The output files are saved in a spec-
ified directory on the server and the administrator is
informed about the export progress. Once the export
ends, the administrator is offered a link to download
the file through the web interface. The same function
is used also for daily database backup.

3.2.3 Locking and Sequences of Identifiers

The administration interface offers entry locking
management to other DEB server modules. If mul-
tiple users can edit the database at the same time
(which is one of the basic advantages of the client-
server architecture), it is crucial to provide exclusive
write locking of entries so that two users are not able
to edit the same entry at a time. Decisions about entry
locking depends on each application design:

• when should an entry be locked and unlocked?

• should only the edited entry be locked or should
the locking affect other entries too?

An application then sends the request to the adminis-
tration module which updates the lock database. The
administration module provides several functions –
besides simple lock and unlock functions, it can tell
which user has locked a given entry, return the list
of locks for selected user and/or dictionary or group
several locks together if they are related. The admin-
istrator has access to the list of all locks and he or she
can also delete chosen locks if the application did not
release them correctly.

Newly created entries should have a unique identi-
fier. If the application does not generate its own iden-
tifiers, the administration module can provide such
service. It is possible to set an identifier pattern for
each dictionary – this pattern looks likeCZE-[id]
and [id] will be replaced with sequentially increased
number. The administrator can also affect the number
used.

3.2.4 The Installation Packages

The administration interface supports automated cre-
ation of Firefox Extension installation packages
(XPI). If the administrator specifies a Relax NG
schema for the dictionary, it is possible to transform
this schema to an application design description in the
XUL description language and the supporting code in
JavaScript. The application created in this way sup-
ports basic forms – single and multiple text fields,

select-boxes of specific values or relational links to
other dictionaries. It can serve as basis for custom
modifications. Of course, the application is able to
connect to server, load data from server and save a
modified entry back. We are currently working on
more complex support for creation of new packages,
mainly for the DEBVisDic client packages.

4 USAGE SCENARIO – HOW TO
MAKE A SAMPLE
DICTIONARY

4.1 New Dictionary Definition

As a first step, the administrator needs to provide ba-
sic information about the dictionary. It does not mat-
ter if there is already an existing dictionary full of
data, or whether the dictionary is going to be built
from scratch. The administrator must specify an en-
try root element, where to find the unique key, several
indexes and an XML schema of the entry.

Let us create a demonstration dictionary from
scratch, we will name the root elemententry
and have the unique key identifier in the element
/entry/headword. The corresponding Relax NG
schema is given in the Example below.

Example 2Relax NG schema

<element name="entry">
<element name="headword">
<attribute name="pos">

<text/>
</attribute>
<text/>

</element>
<oneOrMore>
<element name="sense">

<text/>
</element>

</oneOrMore>
</element>

This schema describes entry with oneheadword
element, withpos attribute, and one or moresense
elements. Of course, Relax NG supports description
of much more complex XML structures.



Figure 3: Sample automatically build client application

4.2 Preparation of an Installation
Package

The preparation of a new basic client application
package requires selection of a dictionary and running
the package generation. The administration module
checks the Relax NG schema and finds all elements
or attributes that containtext child element. All
such elements and attributes are transformed to XUL
textbox fields with the respective name as a label de-
scribing the field. If an element can occur multiple
times in the entry (likesense in our Example), but-
tons for adding and removing the textbox are added to
the application form, too.

The created JavaScript supports loading and sav-
ing documents and also searching for documents. The
application thus enables querying each indexed field
specified in the dictionary management interface. For
example, users can easily find all nouns.

All the created application files are then packaged
into the Firefox extension installation package (XPI).
Users can download this package for installation or
individual files for editing. An example of the result-
ing application is shown on the Figure 3.

For the new client, there are also two basic pre-
view templates (in XSLT) saved on the server side.
One provides basic entry preview displaying all the
data and the second displays raw XML data.

4.3 Application Customization

Thanks to the design of applications based on the
Mozilla development platform, these applications are
easily customizable.

Any change in the layout and design of the form
is done by editing the XUL (XML User-interface
Language) files accompanied with standard CSS
stylesheets. The application logic (i.e. procedures im-
plemented in JavaScript) stays the same for a new lay-
out. Combination of XUL and CSS languages is very
powerful and supports long list of features that are

commonly used in desktop applications. For exam-
ple, we can change PoS textbox field into a drop-down
list.

Example 3Produces textbox field

<textbox id="entry.headword.@pos"/>

Example 4Produces drop-down list

<menulist id="entry.headword.@pos">
<menupopup>

<menuitem label="noun"/>
<menuitem label="verb"/>
<menuitem label="adjective"/>
<menuitem label="adverb"/>

</menupopup>
</menulist>

As we can see, the field labels contain element
names only. This allows the application designer to
change them to something human-readable. The ac-
tual texts are stored in a DTD (Document Type Defi-
nition) file as XML entities, so they can be adjusted to
any texts in one place. Moreover, this mechanism is
also used for localization of the application. It is pos-
sible to include several DTD files for different lan-
guages into installation package and (automatically)
switch between them.

After all the application source files are modified
to meet the designer’s requirements, he or she can up-
load them using the administration interface and let it
build a new version of the installation package.

The application designer can also supplement the
dictionary editor with more preview templates or



Example 5 A field label and the respective entity in
the DTD file.
<label value="&entry.headword;"/>

<!ENTITY entry.headword "headword">

modify the existing ones for different data presenta-
tion. When adding a new template, the template name
must be added to the dictionary description in the
database management interface. The modified tem-
plates are again uploaded to the server using the ad-
ministration interface.

5 CONCLUSION

We have presented a new common administration
module in the DEB development platform that is
shared by all kinds of DEB client applications. With
this interface, the DEB platform provides a invaluable
basis for new dictionary writing applications for all
purposes and all types of dictionaries

Even though the DEB platform is developed as
open source and free platform, we believe that already
in this stage of development it offers interesting fea-
tures for DWSs and that it can speed up the develop-
ment in this area. The applicability of the platform is
best justified with the implemented clients described
in this article and with the 200 registered users that
currently access those applications (counting only the
accesses to the Masaryk University DEB server).

ACKNOWLEDGEMENTS

This work has been partly supported by the Academy
of Sciences of Czech Republic under the projects
T100300414 and T100300419, by the Ministry of Ed-
ucation of CR within the Center of basic research
LC536 and in the National Research Programme II
project 2C06009.

REFERENCES

Balkanet (2002). Balkanet project website,http://www.
ceid.upatras.gr/Balkanet/.

Chaudhri, A. B., Rashid, A., and Zicari, R., editors (2003).
XML Data Management: Native XML and XML-
Enabled Database Systems. Addison Wesley Profes-
sional.

EuroWordNet (1999). EuroWordNet project website,
http://www.illc.uva.nl/EuroWordNet/.

Feldt, K. (2007).Programming Firefox: Building Rich In-
ternet Applications with Xul. O’Reilly.

Graff, D. (2003). English Gigaword. Technical Report
LDC2003T05, Philadelphia, PA USA.

Hanks, P. (2004). Corpus pattern analysis. InProceedings
of the Eleventh EURALEX International Congress,
Lorient, France. Universite de Bretagne-Sud.

Horák, A. and Pala, K. (2006). DEB tools for merging lin-
guistic resources. InProceedings of the Workshop on
Layering Linguistic Information, LREC 2006, pages
55–61, Italy. ELRA.

Horák, A., Pala, K., Rambousek, A., and Rychlý, P. (2006).
New clients for dictionary writing on the DEB plat-
form. In DWS 2006: Proceedings of the Fourth Inter-
national Workshop on Dictionary Writings Systems,
pages 17–23, Italy. Lexical Computing Ltd., U.K.

Joffe, D. and de Schryver, G.-M. (2004). TshwaneLex –
professional off-the-shelf lexicography software. In
Third International Workshop on Dictionary Writing
Systems: Program and List of Accepted Abstracts,
Brno, Czech Republic. Masaryk University, Faculty
of Informatics.

Kilgarriff, A., Rychlý, P., Smrž, P., and Tugwell, D. (2004).
The Sketch Engine. InProceedings of the Eleventh
EURALEX International Congress, pages 105–116,
Lorient, France. Universite de Bretagne-Sud.

Klı́mová, J., Oliva, K., and Pala, K. (April 2005). Czech
lexical database – first stage. InShort Proceedings of
Complex Conference 2005, Budapest, Hungary.

McNamara, M. (2003). Dictionaries for all: XML to fi-
nal product. InXML Conference 2003, Philadelphia,
USA.

Santoso, Y. (2004). Gnome’s Guide to WEBrick. (http:
//microjet.ath.cx/WebWiki/WEBrick.html).

van der Vlist, E. (2003).RELAX NG. O’Reilly Media.


