
Adam Žitňanský UČO : 527346 1

PA026 : Project report

Introduction

In recent years, digital marketplaces have emerged as thriving ecosystems, al-
lowing users to buy, sell, and trade virtual items. Among these platforms, the
Steam Marketplace [1] stands out as one of the largest and most vibrant, with
millions of active users engaging in transactions every day. The Steam Market-
place provides various in-game items, ranging from character skins and weapons
to trading cards and virtual accessories.

The fluctuating nature of item prices in the Steam Marketplace presents
a unique challenge and opportunity for individuals seeking to make profitable
investments similar to more established markets such as the stock market and
forex.

This project focuses on evaluating the effectiveness of different machine and
deep learning models for predicting future prices of items with the main target
of making a profit based on their predictions.

Data

As the task is price prediction, primary data are historical prices of items from
the steam marketplace (see 1). As these are not directly available as datasets,
the first step was to scrape them from Steam marketplace. It was relatively
straightforward as steam market private API has an endpoint that returns the
whole history for a given item in a nice clean JSON 2.

Additionally, I have used another source to obtain some fundamental in-
formation relevant to the predictions. That includes Google trends for related
keywords such as item name, steam marketplace, etc. Other data were obtained
from gaming subreddits on Reddit. However, this is not included in this final
evaluation as the data provider (Push shift API [2]) is currently not functional
because of some legal problems with Reddit.

Figure 1: Item prices history from steam market place.



Adam Žitňanský UČO : 527346 2

Figure 2: JSON with historical item prices obtained from private Steam API.

Aproach

The primary focus was on regression-based models, starting with basic models
such as autoregressive moving average models (ARIMA, SARIMA) and linear
regression. However, these simple models did not yield satisfactory results,
prompting the exploration of more complex alternatives. That included deep
learning models for time series predictions using implementation for the TSAI
library. A list of evaluated model architectures can be found in the evaluation
section.

Training and Inference

The inference is closely connected with training as it’s done as a forward walk
through the data where in each step model is trained on history relative to the
current position. Using this model next timestamp is predicted. Prediction is
made on multiple items in parallel (in the case of evaluation, nine items were
used ).

Evaluation and results

Evaluation can be divided into two parts. The first one is based on several
metrics such as MSE, MAE, and directional accuracy (accuracy when only ac-
counting for predicted direction from the regression model). Secondly, the po-
tential profitability of the prediction is evaluated by simulated trading on unseen
historical data (known as backtesting in the evaluation of trading systems).



Adam Žitňanský UČO : 527346 3

For this purpose, trading is simulated using simple entry logic - from pre-
dicted items the one with the highest predicted price gain is selected, and if this
gain is higher than the given threshold item is bought.

The output of this is the profit percentage achieved during the testing period.
This was also evaluated considering realistic trading fees, as these have a crucial
effect on the final result. Figure 3 shows running evaluation with partial results
from already executed trades.

Results for all evaluated models can be seen in the table below 1. Results
with different realistic fee levels are shown in table 2

Figure 3: Backtesting- evaluation by simulated trading using the model on
unseen historical data.

Entry treshold

As stated before, the threshold was used to determine whether to enter the
trade based on predicted gain. For the tables above, this threshold was set to 0,
which means if the predicted gain is positive the item is bought. This is possibly
not the optimal approach, especially if there are significant trading fees. The
figure 4 shows how changing the threshold influences the result.

Implementation details and running instructions

Implementation is provided in the form of Jupiter notebooks. It uses a few
standard data science libraries such as pandas, numpy and TSAI [3] library,



Adam Žitňanský UČO : 527346 4

Model name Directional accuracy MAE Return 0 % fee avg trade
GRUPlus 93.77% 1.19 288.07% 11.39%
InceptionTimePlus 98.5% 6.37 217.48% 83.07%
gMLP 93.39% 0.987 418.9% 9.85%
OmniScaleCNN 97.62% 4.04 129.22% 19.67%
XCM 98.2% 5.95 190.91% 46.54%
LSTMPlus 94.82% 1.63 470.33% 21.96%
mWDNPlus 95.21% 1.43 68.10% 4.07%
Random (benchmark) 51% - -26.69% -1.28%
Lookahead (benchmark) 100% 0 1190033% 6.647%

Table 1: This table shows a comparison of different models. It includes returns
from backtesting and a few other metrics, such as MAE and directional accuracy,
which means the accuracy of the regression model when accounting only for
direction. Model names are same as in TSAI library [3]

Model name Return 1 % fee Return 3 % fee Return 5 % fee
GRUPlus 243.7% 145.7% 79.8%
InceptionTimePlus 211.2% 198.7% 186.5%
gMLP 307.8% 149.8% 51.52%
OmniScaleCNN 118.0% 96.8% 77.5%
XCM 182.2% 160.5% 149.3%
LSTMPlus 415.8% 320.6% 241.5%
mWDNPlus 46.0% 9.7% -18%
Lookahead (benchmark) 253072.0% 10825.6% 341.5%

Table 2: This table shows returns for tested models with different fee levels.

which works with pytorch backend and provides an implementation of state-of-
the-art models for time series predictions.

Running the project

The main code is located in a notebook called Prediciton.ipynb , and results
can be reproduced by running this notebook. It produces pickle files with back-
testing results which are further evaluated in notebook Eval.ipynb. There are a
few other notebooks containing data scraping and preprocessing code, but it is
unnecessary as final data are included in the archive.

Conclusions and future work

In this project, different approaches for price prediction on the steam mar-
ketplace were evaluated with some interesting results. Some models achieved
positive results in the backtest eaven with realistic trading fees, so they could be
potentially profitable. When it comes to potential feature improvements it will



Adam Žitňanský UČO : 527346 5

Figure 4: This plot shows the influence of the entry threshold on the resulting
profit during the testing period in the case of 5% trading fees.

be interesting to test more complex entry logic as the one used now is pretty
simple. Another improvement can be possibly made by finding more optimal
hyperparameters.

References

[1] “Steam comunity marketplace.” https://steamcommunity.com/market/.
Accessed: 2023-6-6.

[2] “The pushshift.io reddit api.” https://github.com/pushshift/api/blob/
beta/docs/index.rst. Accessed: 2023-6-6.

https://steamcommunity.com/market/
https://github.com/pushshift/api/blob/beta/docs/index.rst
https://github.com/pushshift/api/blob/beta/docs/index.rst


Adam Žitňanský UČO : 527346 6

[3] “TSAI : State-of-the-art Deep Learning library for Time Series and Se-
quences. .” https://timeseriesai.github.io/tsai/. Accessed: 2023-6-6.

https://timeseriesai.github.io/tsai/

