Relational learning on knowledge graphs

Marek Toma, Vojtéch Kalivoda

1 Introduction

Knowledge graphs (KGs) are knowledge bases with a graph structure, where the entities are rep-
resented as nodes and relations between them with edges; typically KGs consist of different node
and edge types. KGs have been widely used in biomedical domain for knowledge representation
and discovery.

In this project we aim to design a model for relational learning on biomedical KGs with goal
of drug re-purposing and side effect prediction. We propose a self-supervised pre-training of the
model on task of graph reconstruction. Which showed a slight improvement in performance and
stability of the model in downstream task of link prediction.

2 Related work

Zitnik et al.[1] designed a GCN-based model for relational learning on knowledge graphs, with the
goal of predicting polypharmacy side effects. In their work, Huang et al.[2] used self-supervised
training to pre-train a language model for common sense knowledge graph embedding, where their
treated subgraphs as sentences and used the model to predict original sentences from corrupted
ones. Liu et al.[3] used contrastive learning to train a model for concept linking across knowledge
graphs. In their survey paper, Liu et al.[4], described various techniques for self-supervised learning
on graphs.

3 Dataset

The dataset used in our project is the Hetionet! biomedical knowledge graph. It consists of 11
node types (e.g. Gene, Disease, Biological process, Compound) and 24 relationship types (e.g.
Compound-binds-Gene, Disease-resembles-Disease, Gene-participates-Biological process); where
the total number of nodes is 47 031 with 2 250 197 edges.

Presynaptic participates
nAChRs

CHRNB3

Highly
calcium
permeable
nAChRs

Highly calcium
permeable

postsynaptic

nAChRs

Sejeloosse

causes

Activity on
Chromaffin
; Cells

Participates

CHRNB4

Nicotine

Terminal
dependence

insomnia

Varenicline

Figure 1: A snippet of the Hetionet knowledge graph. The image source [5].

L Available at https://het.io .

4 Model

Our model consists of an encoder, a pretext decoder used in pre-training, and a downstream
decoder used for relation prediction. The encoder is given a knowledge graph with some initial
node embeddings and transforms them into new node embeddings. The pretext decoder is given
a perturbed graph and node embeddings and it tries to reconstruct its connectivity tensor. The
downstream decoder is given a pair of node embeddings and predicts the existence of task-specific-
relationship between them.

@)

1 — Pretext

) I::> Encoder oo Decoder I:>
OE) embeddings

Reconstructed graph

Perturbed graph

extract 5
— i tream
|:: > Encoder [————— node pairs owns
2) Node and neg_ative Node pairs Decoder |::>
embeddings sampling

relation
predictions

preprocessed graph

Figure 2: 1) Our pre-training pipeline where the encoder generates node embeddings from randomly
perturbed graph and the decoder tries to reconstruct the original graph. 2) The downstream
pipeline where the encoder generates node embeddings, from which we create node task-dependant
node pairs (either (compound, disease) or (compound, side effect) pair). We also generate negative
samples via a corruption of positive samples.

4.1 Encoder

The encoder is a graph convolutional network comprised of SAGEConv[6] layers. The general
framework of the forward pass of these layers:

1. For each node i we aggregate node representation from its neighborhood (either initial em-
beddings or embeddings from the previous convolutional layer), this is done for each relation
type r separately.

I+1 . .
hg\f(i,)r) = aggregate(h’,Vj € N(i,r))

2. Next we concatenate the aggregated information with the embedding of node i and multiply

it with the parameter matrix for relation r.

hz(-H_l) = o(W, * concat(h, hj\l/zll)))

3. Afterwards a normalization might be applied.
RUFD = norm(h(-lﬂ))

4. Lastly we aggregate the outputs for all relation-specific neighborhoods and obtain new em-
bedding for node 1.

4.2 Decoders

The pre-text decoder consists of one feed-forward network for each relation type. Each of these
networks predicts the probability of a relationship (of a given type) between two given nodes.

The downstream decoder consists of a single feed-forward network for the final prediction task;
either predicting treats/palliates/none between disease and compound pairs or the existence of
side effects between disease and side effect pairs.

5 Methodology

Our approach consists of two training parts: a pretext task aimed at training the encoder and
pretext decoder, and a downstream task focused on training the encoder and downstream decoder.
In the preprocessing stage, we removed a portion of relations that will be used for training and
testing of the downstream decoder.

The pretext task is a reconstruction of a perturbed graph, which is obtained by dropping half
of the edges that are passed to the encoder that generates node embeddings. These embeddings
are passed to the pretext decoder that predicts the existence of the edges and tries to reconstruct
the original graph.

The Adam optimizer with binary cross entropy loss function was used and the model was
trained for 150 epochs.

Pretext

Eiarid Decoder

— —

"

Perturbed graph

Node
embeddings

Reconstructed graph

Figure 3: Reconstruction of perturbed graph

The downstream task consists of two link prediction tasks. During training, the compound-
disease or compound-side effect pairs are generated; the positive pairs are generated from the
portion of known relations that have been removed from the graph in preprocessing. The negative
pairs are generated by random corruption of the positive pairs (such that the corrupted pair is not
present in the original graph).

Pairs are then passed to the encoder that generates node embeddings, which are further fed to
the downstream decoder that predicts the relations of the pairs. For compound-disease possible
predictions are treats, palliates, or none, for compound-side effect pairs the prediction are causes
or none.

During training, the Adam optimizer with cross-entropy loss function was used and the model
was trained until validation f1 score stopped increasing.

extract
|:> Encoder [—————) node pairs Downstream :> relation
Node and negative | Node pairs s predictions
embeddings | sampling

preprocessed graph

Figure 4: Prediction of relations between compound-disease pairs

Model | Accuracy Precision F1

TransE 0.64 0.66 0.63
GCN 0.81 0.84 0.80
pre-trained GCN 0.82 0.86 0.82

Table 1: Summarization of results of prediction task for compound-disease pairs.

6 Evaluation and results

We trained and evaluated our model both, with and without pre-training and compared it with
TransE?[7).

For compound-disease prediction task our pre-trained model slightly outperformed the non-
pre-trained variant, and both of them outperformed the baseline, the results are summarized in
Table 1. Most of the miss-classification our model made were that it predicted that a compound
treats/palliates a disease for unknown pairs (as seen in confusion matrix), which is the desirable
outcome for the purpose of drug re-purposing.

For compound-side effect prediction we were not able train the model to give any meaningful
predictions, the model kept predicting none for all the samples.

7 Conclusion

Our pre-training approach slightly improved the performance in prediction task on (compound,
disease) pairs, while also made the model more stable; the non-pre-trained model tended to have
higher difference in f1 score between validation and testing dataset. We were not able to train a
meaningful model on (compound, side effect) pairs, this might be because the data do not contain
sufficient amount of relevant information for the model to make such predictions.

References

[1] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with graph
convolutional networks,” Bioinformatics, vol. 34, pp. i457-1466, jun 2018.

[2] J. Huang, Y. Du, S. Tao, K. Xu, and P. Xie, “Structured self-supervised pretraining for com-
monsense knowledge graph completion,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 1268-1284, 2021.

[3] X. Liu, L. Mian, Y. Dong, F. Zhang, J. Zhang, J. Tang, P. Zhang, J. Gong, and K. Wang,
“Oagknow know : Self-supervised learning for linking knowledge graphs,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 2, pp. 1895-1908, 2023.

[4] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and P. S. Yu, “Graph self-supervised
learning: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 6,
pp. 5879-5900, 2023.

[5] D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S. L. Chen, D. Hadley, A. Green,
P. Khankhanian, and S. E. Baranzini, “Systematic integration of biomedical knowledge priori-
tizes drugs for repurposing,” eLife, vol. 6, p. e26726, sep 2017.

[6] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
2018.

[7] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating em-
beddings for modeling multi-relational data,” in Advances in Neural Information Processing
Systems (C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds.), vol. 26,
Curran Associates, Inc., 2013.

2We used implementation available in Deep Graph Library: https://docs.dgl.ai/index.html .

Confusion matrix

40
35
None

30

25

@
2 Treats q
}_
15

10

Palliates 1 0 19

T T T
None Treats Palliates
Predicted

Figure 5: Confusion matrix of our pre-trained model for
compound-disease pairs.

Confusion matrix

30
None 11
25
20
1]
g Treats A 2
15
r 10
Palliates 4 2 14
F5
None Treats Palliates

Predicted

Figure 6: Confusion matrix of TransE model for compound-
disease pairs.

A Instalation and startup instructions

The project contains two jupyter notebooks, disease_compound.ipynb and side_effect.ipynb, that
contain hyper-parameters and full pipeline for our models (from loading of the data to evaluation),
for (compound, disease) link prediction task and (compound, side effect) link prediction task
respectively. The definitions of data loading, training, and other helper functions are contained
in RelationalLearning/Dataloader.py and RelationalLearning/utils.py files. The non-preprocessed
dataset is contained in data/.

To run the solution python 3.6+ is required along with these packages: dgl, numpy, torch,
sklearn, and matplotlib.

	Introduction
	Related work
	Dataset
	Model
	Encoder
	Decoders

	Methodology
	Evaluation and results
	Conclusion
	Instalation and startup instructions

