
Scheduling the categories for orienteering

competitions

David Rajnoha

June 2021

1 Introduction

The goal of the project was to develop an application, that will schedule the
categories and help to prepare the start lists for an orienteering competition.

1.1 Problem description

In an orienteering race, the competitors in a category usually start one after
other in a fixed interval (typically ranging from 1 to 5 minutes). The competitors
in one category have to start in subsequent interval, meaning a category forms
a block of start times rather than the competitors being randomly scattered
through the length of the start lists. Due to the organizational and logistical
needs, it is desirable to reduce the number of competitors starting in the same
minute. This means that we have to schedule the blocks of competitors in a way,
that the number of concurrent starters would not surpass a chosen value. Due to
the nature of the orienteering and the rules, there are further restrictions on the
order of categories. The categories with the same first control can not start in
the same minute, and the categories with the same route can not even overlap.
These restrictions have to be fulfilled while creating the schedule. Further we
can work with other constraints, that don’t have to be necessarily fulfilled, but
the schedule, which fulfills them can be considered better. To these constraints
belong requests for two categories to start at the same time or requests for a
category to start at a specific time. These constraints usually reflect the wishes
of the competitors. Further we will call them soft constraints. The goal of the
scheduling is to find a schedule with a given limit of competitors starting at the
same time, that will meet all hard constraints and find an optimum between
the fulfillment of the soft constraints and the total length of the schedule.

1.2 Flexible Job Shop Problem

The scheduling problem can be seen as a variant of the flexible job shop schedul-
ing problem (FJSP). In the FJSP, we have to schedule a set of n jobs J =
{J1, J2, ..., Jn} to m machines M = {M1,M2, ...,Mm}. Each job is composed

1

from a number operations, where a given permutation of the operations imposes
a restriction on how these operation have to be ordered. Each of the operation
can be processed by any of the machine from M . [3]
If we consider our problem with no restrictions, it is a FJSP, where we will
consider the categories as the jobs (each job consist of only one category) and
slots as the machines. As a slot we mean a designated place in a starting minute
in a given interval. The number of slots is therefor equal to the starting interval
times the limit of runners in the same minute.
Further we will consider the constraints, that will limit the jobs being able to
run in the slots belonging to the same minute or limit the jobs to run at the
same time. The soft constraints will not serve as a hard limit but along with
time will be a value we would aim to minimize.
The FJSP is a NP hard problem, meaning that it is not possible to efficiently
find the optimal solution. Therefore it is necessary to use some form of heuristic,
that will help us find a solution that is good enough. For this project, I have
decided to use genetic algorithms. This decision was mainly influenced by my
desire to learn more about evolutionary computing and try it in practice. That
means there could be other approaches, which would solve the problem more
efficiently.

1.3 Genetic algorithms

The genetic algorithm is an approach of solving the NP hard problem inspired
from the principle of evolution. The possible solutions are encoded to a genome
represented as a string or a list of characters. Initially are these genome created
at random. In each round of the algorithm, a new generation of the individuals
is created by combining the genomes of the individuals from the previous gen-
eration. Some mutations may be applied to improve the diversity and explore
different solutions. Then are the created genomes evaluated using a specific
evaluation function and based on this score are some kept and some discarded.
After the evaluated score of the individuals converges or after a given number
of generations is the best individual considered the solution to the problem. [2]

2 Existing solutions

Jan Novák is in his bachelor thesis ”Algoritmus pro generováńı rozvrhu ori-
entačńıho běhu” [4] also solving the problem of generating the schedule for the
orienteering competitions. The difference from this project is the usage of a
different algorithm (simulated annealing) and also the fact, the only the hard
constraints are considered and the schedule can be optimized just on the length
of the schedule.

2

3 Implementation

The application implements a genetic algorithm solving the described problem.
In the following paragraphs are described the core classes and functions tak-
ing part in the implementation. The application also contains simple interface
and a layer for parsing data. These layers are not described here, their basic
description is provided in the docstrings directly in the code.

3.1 Representation of real world objects

The following classes are used to represent the real world objects.

Category

The Category class carries the information about the category. The most
important are the number of competitors and the constraints for the category,
data that are bring the necessary information for the schedule creation. The
category is the equivalent of a job in the FJSP.

Slot

The Slot class is the equivalent of a machine in the FJSP. It contains the Cate-
gory objects that start in the given slot. It provides the iter next categories
and the next category methods, allowing the iteration through the categories
based on their order. This functionality is used in the evaluation of a particular
solution.

Race

The Race class contains all information about the race including the empty
Slot and Category objects associated with it.

3.2 Genetic Algorithm Logic

The LEAP [1] library is used for the implementation of the genetic algorithm.
The Decoder and Problem classes from the library are extended as RaceDecoder
and RaceProblem adding the functionality specific for our problem. With
these two classes is also tied the class RacePhenom and also representation of
the genome.

RacePhenom

The RacePhenom class serves as a representation of a particular solution of our
problem. It contains Slots with Categories distributed among them. In addition
it provides methods that return information useful during the evaluation, such
as the total length and the efficiency methods.
The later one is the division of the optimal length and the total length of the

3

schedule. The optimal length is the length of q start list without any restrictions
- the number of the competitors divided by the number of concurrent starters.
The efficiency is therefore 1 at best and decreasing with increasing length of the
schedule.

Genome

In genetic algorithms, genome carries the information about the solution in a
form that is suitable to mutate and combine the information with other indi-
vidual. Here is the genome represented as a list containing the categories and
numerical separators that encode the slots to which the categories belong. The
separators are not identical due to the implementation of the crossover.

RaceDecoder

The RaceDecoder class extends the Decoder class from the LEAP library.
Its main function is to take the genome of an individual and decode it into a
RacePhenom.

RaceProblem

The RaceProblem class extends the Problem class from the LEAP library.
Its main feature is the evaluate method, which takes a RacePhenom and
returns its fitness- a number, which represents how good is the phenom. It also
defines the ordering of the evaluated score, in the case of this project lower score
means better evaluation.

evaluate

The evaluating method is one of the key components of the program. It com-
putes the score which determines the fitness of the RacePhenom. It does so in
the following way.
It computes the time score as (1 - efficiency) * 100 taking values
from 0 to 100. Then it computes the time req score and the same start req score
as the number of unfulfilled same time requests and same start requests respec-
tively.
These scores are then added using the formula (time score * 1.5) + time req score
+ same start req score and form the soft constraints score. The
coefficients were established by creating schedules that were evaluated as better
or worse and tuning the coefficients, so the result of the evaluating function
would correspond to the human evaluation.
The hard constraints score is computed as the number of hard con-
straints that are not fulfilled. That means the number of categories starting
in the same minute with the same first control and the number of categories
with the same route starting concurrently.
The evaluating function than returns hard constraints score * 100 +
soft constraints score as the evaluation of the RacePhenom object

4

Pipeline

The core of the functionality is in the ga pipeline function. The function
contains a while cycle, where the toolz.pipe together with the functionality
from the LEAP library forms a pipeline, that produces the offsprings of the
population. The pipeline takes the parent generation population, clones the
individuals so the parents are not changed, performs the mutations, performs
the crossover, computes the fitness score and collects the child generation. Then
the best individuals from the parent and child generation are selected and these
are passed to the next round of the cycle.

Mutation

The mutation is conducted by randomly selecting two position in the list repre-
senting the genome of the individual and flipping the values on these positions.
The number of mutations is determined by the mutations probability.
When the fitness of the best individual is equal to the average fitness, the
mutation rate is increased to two, meaning two instead of one mutations are
performed. This leads to an increase in exploring further solutions and getting
out of the local optimum. The particular value was determined experimentally,
higher mutation rates weren’t beneficial and start of the higher mutation rates
before reaching the local minimum lead to slower overall convergence.

Crossover

The genome representation of our problem is a permutation by its nature. If a
genome is valid, it must contain all categories and all separators exactly once.
Therefor, we have to use a crossover that will preserve the property of permu-
tation.
For our project, we have chosen the cycle crossover. The cycles are identified in
a way, where we start at the first position not in any previous cycle in the first
genome. We look at the element in the same position in the opposite genome.
We find that element in the first genome, we look at the element in the second
genome. We continue in this way until a cycle is formed. Then we continue
with the next unused element. We can then alter the genomes by flipping half
of the cycles. [2]

4 Installation and execution

The project is available at https://github.com/DavidRajnoha/pa026.
To run the application, clone the repository and install the required packages
using

pipenv sync

Then run the following command. (The value of the options here will result in
a sample run).

5

https://github.com/DavidRajnoha/pa026

python main.py schedule_categories
--oris_id=5662
--course_definition=resources/JML2020TBM.Courses.Edited.txt
--same_start_req=resources/JML2020TBM_same_start_requests
--specific_time_req=resources/JML2020TBM_time_requests
--concurrent_slots=3
--ignore_categories=HDR,T,P
--interval=2

The description of the options is following:

oris id

Id of the race in the ORIS - an information system of the Czech orienteering.
It is used for downloading the number of registered competitors for the given
race.

course definition

Definition of the courses for the catagories in the following format.

ID1, ID2, ... IDn S1-C1-C2-C3-...-CN

First there are the IDs of the categories to which the course belongs to separated
by comma and space. Then there is a space and the controls on the course
separated by dashes. The first control is the start, and is therefor ignored. The
course definitions are needed to specify the hard constraints.

same start req

The requests for categories that should start at the same time. Each line has
the following format.

ID1 ID2

Meaning that on each line, there are the IDs of the categories that should start
at the same time. This requirements are used for one of the soft constraints.

specific time req

The requests for the categories to start during a specific time. Each line has the
following format.

ID STR1 STR2 STR3 ... STRN

That is the id of the category followd by a number of times that the category
is expected to start during.

6

https://oris.orientacnisporty.cz/

concurrent slots

The maximum number of runners to start in the same minute.

interval

The interval in which the runners from the same category start.

generations

The number of generations after which the algorithm terminates.
Defaults to 200

initial population

The number of individuals that form the initial population.
Defaults to 20

5 Run demonstration

When we run the example command

python main.py schedule_categories
--oris_id=5662
--course_definition=resources/JML2020TBM.Courses.Edited.txt
--same_start_req=resources/JML2020TBM_same_start_requests
--specific_time_req=resources/JML2020TBM_time_requests
--concurrent_slots=3
--ignore_categories=HDR,T,P
--interval=2

the algorithm start computing and gradually prints out the average fitness of
the population and the fitness of the best individual.

best: 47, average: 49.8
best: 47, average: 49.8
best: 47, average: 49.8
best: 47, average: 49.8
best: 47, average: 49.75
best: 47, average: 49.7
best: 47, average: 49.55
best: 47, average: 49.55
best: 47, average: 49.55
best: 43, average: 49.2
best: 43, average: 49.0
best: 43, average: 48.55
best: 43, average: 47.95
best: 43, average: 46.85

7

best: 43, average: 46.2
best: 43, average: 45.45
best: 43, average: 44.85
best: 42, average: 44.25
best: 42, average: 43.5
best: 37, average: 42.3
best: 37, average: 41.95
best: 37, average: 41.3
best: 37, average: 41.0
best: 37, average: 40.55
best: 37, average: 39.85
best: 37, average: 38.85
best: 37, average: 37.7

After the run, the program saves the results in a json format and also in a
graphical form.

{
"D16": {"entries": 8, "first start": 0, "offset": 0},
"H55": {"entries": 9, "first start": 16, "offset": 0},
"H16": {"entries": 10, "first start": 34, "offset": 0},
"H65": {"entries": 5, "first start": 54, "offset": 0},
"D21D": {"entries": 5, "first start": 64, "offset": 0},
"D14": {"entries": 20, "first start": 74, "offset": 0},
"H21C": {"entries": 29, "first start": 0, "offset": 0},
"H20": {"entries": 0, "first start": 58, "offset": 0},
"D35": {"entries": 24, "first start": 58, "offset": 0},
"D65": {"entries": 4, "first start": 106, "offset": 0},
"H12": {"entries": 22, "first start": 0, "offset": 0},
"H10": {"entries": 15, "first start": 44, "offset": 0},
"D55": {"entries": 6, "first start": 74, "offset": 0},
"H18": {"entries": 2, "first start": 86, "offset": 0},
"D20": {"entries": 1, "first start": 90, "offset": 0},
"D18": {"entries": 1, "first start": 92, "offset": 0},
"H45": {"entries": 24, "first start": 1, "offset": 1},
"D12": {"entries": 23, "first start": 49, "offset": 1},
"D10N": {"entries": 11, "first start": 1, "offset": 1},
"D10": {"entries": 16, "first start": 23, "offset": 1},
"D21C": {"entries": 17, "first start": 55, "offset": 1},
"D45": {"entries": 12, "first start": 89, "offset": 1},
"H21D": {"entries": 3, "first start": 1, "offset": 1},
"H35": {"entries": 28, "first start": 7, "offset": 1},
"H10N": {"entries": 6, "first start": 63, "offset": 1},
"H14": {"entries": 20, "first start": 75, "offset": 1}}

D16 ### D16 ### D16 ### D16 ### D16 ### D16 ### D16 ### ...
H21C ### H21C ### H21C ### H21C ### H21C ### H21C ### H21C ### ...

8

H12 ### H12 ### H12 ### H12 ### H12 ### H12 ### H12 ### ...
H45 ### H45 ### H45 ### H45 ### H45 ### H45 ### H45 ...
D10N ### D10N ### D10N ### D10N ### D10N ### D10N ### D10N ...
H21D ### H21D ### H21D ### H35 ### H35 ### H35 ### H35 ...

6 Testing and evaluation

The testing of the application can be divided into three parts - finding the best
parameters for the algorithm, testing the total length of the schedule compared
to the length of the schedule generated manually, and testing whether the appli-
cation is able to create schedules with soft constraints fulfilled while not overly
prolonging the total length of the schedule.

6.1 Testing against real data

The testing is conducted against the data from the real races. The program
contains support for querying these data and is able to compute the efficiency of
the manually created schedules. Based on the queried data (interval of the race,
maximum number of runners in the same minute) is then generated a schedule.
The efficiency of the generated schedule is compared with the efficiency of the
manually created one and the difference is used in further evaluations.

6.2 Finding the best parameters of the algorithm

The genetic algorithm takes two parameters - the number of generations and the
size of the population. We have run the algorithm with a combination of values
5 times on a sample of 10 real races and measured the efficiency difference. The
results can be seen in the following table.

generations\population 20 40 80 100
200 0.11 0.0761 0.0589 0.0443
400 0.0597 0.0304 0.0093 0.0138
600 0.0361 0.0222 0.0086 -0.0011

The results show that the combination of the population size of 80 with 400
generations shows the most significant changes in the efficiency. The further
increase of the parameters increases the run time with rather small reward in
the efficiency.
To determine whether is more significant the size of the population or the num-
ber of generations, we have run another test, with results in the following table.
We have again used the sample of 10 races and run the program 5 times. We
have used multiple values of generations and initial population with the property
that theirs product is constant (in our case 32 000).

9

generations / population 1600 / 20 800 / 40 400 / 80
mean 0.0562 0.0478 0.0612
std 0.0103 0.0105 0.0067

6.3 Testing the length of the schedule

After finding suitable values for the population size and the number of genera-
tion, we moved to testing the length of a generated schedule. We have created
a schedule for 89 races, five times for each race and compared the efficiency
with the efficiency of the manually created schedules. The average efficiency
difference ended up 0.2 in favor of the manually created schedules. The stan-
dard deviation ended up 0.4. This was partly due to later discovered problems
with the automatic querying the information about the races, where sometimes
the values we got were not entirely accurate. That meant that the program
sometimes tried to create schedules with more strict or more relaxed conditions
then the real schedule.
We have decided to repeat the testing using a set of 9 selected races, where the
information queried from the races were as expected. For each of the 9 races, we
created the schedule 10 times. The average difference of the efficiencies ended up
being −0.04 with the standard deviation of 0.03. That means, that the length
of the generated schedules was about the same as the schedules created manu-
ally. In the following image are shown the efficiencies for the individual races.

6.4 Testing the soft constraints

Finally we have tested, whether is the program able to generate a schedule
that fulfills the given soft requirements. Due to the fact, that collecting the
requirements is a tedious manual job, the test has been conducted on a set
of 5 races, with the average of 40 requirements for one race. For each race,

10

we generated the schedule 5 times and observed the percentage of unfulfilled
requests and the difference between the efficiency against the manual schedule.
The results are in the following table.

ID Efficiency difference Total requirements % req unfulfilled stdev
4930 0.08 55 0.25 0.03
4931 -0.03 28 0.54 0.05
4932 -0.11 45 0.22 0.05
4933 -0.07 39 0.07 0.02
5662 -0.02 33 0.08 0.04

-0.03 40 0.21 0.04

From it can be seen, that the schedules on average failed to fulfill one fifth
of the requirements. The race with the id 4931 is an outlier with more then
a half requirements unfulfilled. That was caused by the fact, that many of
the requirements for the specific time were for time after the end of a sensibly
efficient schedule.
In addition to the percentage of requirements fulfilled, two things are worth to
be noted. First is the difference in efficiency, which is roughly the same as the
difference for the generation of schedules without the requirements. The second
is the average standard deviations of the percentage of unfulfilled requirements
that ended up being 0.04. That is rather small value hinting at the fact, that the
generated solutions are not getting stuck in a various different local optimums,
but instead converging to a good solution.

7 Conclusion

The program is able to schedule the start lists for a orienteering competition
using a genetic algorithm. The testing has shown, that the length of the gener-
ated schedules is similar to the length of the schedules created manually. When
taking in account the soft constraints, the algorithm can fulfill most of them
without significantly affecting the length of the schedule.
However, the testing of the soft constraints has also shown that there is still an
area for improvement. The program is not well equipped to deal with requests
to start at the end of the start list, as these have to be converted to a specific
time request, and without the prior knowledge of the length of the start list can
this conversion lead to requests, that can not be fulfilled.

References

[1] Mark A. Coletti, Eric O. Scott, and Jeffrey K. Bassett. “Library for Evo-
lutionary Algorithms in Python (LEAP)”. In: Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference Companion. GECCO ’20.
Cancún, Mexico: Association for Computing Machinery, 2020, pp. 1571–

11

1579. isbn: 9781450371278. doi: 10.1145/3377929.3398147. url:
https://doi.org/10.1145/3377929.3398147.

[2] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
2nd. Springer Publishing Company, Incorporated, 2015. isbn: 3662448734.

[3] Xinyu Li et al. “Review on flexible job shop scheduling”. In: IET Collab-
orative Intelligent Manufacturing 1 (June 2019). doi: 10.1049/iet-
cim.2018.0009.

[4] Jan Novák. “Algoritmus pro generováńı rozvrhu orientačńıho běhu”. Masaryk
University, 2015.

12

https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1049/iet-cim.2018.0009
https://doi.org/10.1049/iet-cim.2018.0009

	Introduction
	Problem description
	Flexible Job Shop Problem
	Genetic algorithms

	Existing solutions
	Implementation
	Representation of real world objects
	Genetic Algorithm Logic

	Installation and execution
	Run demonstration
	Testing and evaluation
	Testing against real data
	Finding the best parameters of the algorithm
	Testing the length of the schedule
	Testing the soft constraints

	Conclusion

