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1. Introduction

Biomedical image classification and segmentation play a significant role in computer-aided di-
agnosis due to their influence on overall efficiency and accuracy. In recent years, deep learning
models have achieved state-of-the-art performance rates in many computer vision tasks, including
image classification and segmentation [2].

The aim of this project is to first classify MRIs (magnetic resonance imaging) into two classes
(does/doesn’t contain brain tumor). And subsequently, for those classified as containing the
tumor, produce a binary segmentation label map that marks the pixels belonging to the tumor
region within the MRI.

2. Existing solutions

In medical image processing, dataset acquisition and annotation is a very difficult and time-
consuming process. Therefore, a lot of solutions come from various competitions centered around
a specific dataset. Brain Tumor AI Challenge (2021)' was an example of such a competition,
which involved both, brain tumor detection and classification of multi-parametric magnetic res-
onance imaging (mpMRI) scans. It involved a decade of Brain Tumor Segmentation (BraTS)
challenges, where the participants performed a multilabel segmentation, effectively dividing the
brain tumor into several sub-regions. In the classification part, the participants tried to predict
MGMT promoter methylation status, an important biomarker for the treatment of brain tumors.

3. Data

In this project, I've used data from two datasets. The first, from now on also referred to as main
dataset, was originally created for the work of Buda et al. [1|. They proposed a fully automatic
way to quantify tumor imaging characteristics using deep learning-based segmentation and tested
whether such characteristics are predictive of lower-grade glioma tumor genomic subtypes. Their
whole pipeline is illustrated in Fig. 1. The entire main dataset is available at Kaggle*. It contains
data from 110 patients from 5 different institutions. The number of data samples for one patient
varies between 22-80. Together there are 3929 data samples, however, only around 1300 contain
the tumor itself, making the whole dataset quite imbalanced. Samples of 101 patients contain 3
modalities: the grayscale original, post-contrast T'1 weighted, and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR) versions. These were used together as a 3-channel image (see in fig. 2).
The rest of the samples contain only the FLAIR version, which was copied into all 3 channels.
For all samples, there are ground truth binary segmentation maps available.

The second, additional dataset, also available at Kaggle®, contains 7023 images of brain
MRIs which are classified into 4 classes: glioma, meningioma, non-tumor and pituitary. I've
used all glioma images (1621) and as many non-tumor ones (798) to make the entire dataset

Ihttps://wuw.rsna.org/education/ai-resources-and-training/ai-image-challenge/
brain-tumor-ai-challenge-2021

“https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

3https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset?resource=
download
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Figure 1: Pipeline used by Buda et al. in [1|. ITmage source:[1]

more balanced. All these images contain only one of the three aforementioned channels, therefore
it is copied 3 times, so it could be used as a 3-channel input.

The main dataset is usable for both, classification and segmentation. Therefore, I've randomly
picked 20% of samples (786) into the test dataset. It contains both, tumor (262) and non-tumor
(524) samples. So, the classification model was tested on all these samples, and the segmentation
one only on those containing the tumor. The rest of the non-tumor samples from the main dataset
was used for the training of the segmentation model. The classification model was trained on
all train data from the main dataset, plus all data from the additional dataset (a total of 5562
samples).

Original Post-contrast

Ground truth

Figure 2: An example of individual channels and binary ground truth label map for one data
sample from the main dataset.
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4. Methodology

The overall task was to create a pipeline consisting of two models, one for image classification,
second for segmentation. In what follows, the training and evaluation processes of both of these
models are described.

4.1. Image classification

The classification model is an ensemble of three individual models performing binary classifi-
cation. The final label is decided by a majority voting scheme of these three models. They
were all trained via transfer learning, meaning that they all use a feature extractor with weights
pre-trained on the ImageNet* dataset with several added final custom layers. The used feature ex-
tractors are the following CNNs without the final classification layer: ResNet50 |3|, InceptionV3
[4] and InceptionResNetV2 [5].

Training process

The training (or rather re-training) was done using the classification train dataset described in
the previous section, from which I used 10% as validation dataset. All three models shared all
pre-processing steps, as well as all hyper-parameter settings.

The input was resized to 256 x 256 pixels, augmented via random rotations/flips, random
width /height shifts to diversify the data [6], and normalized to the interval [0, 1].

The training was performed on GPU in Google Colaboratory® environment for 40 epochs, using
the Adam optimizer, with a fixed learning rate of 0.001, batch size of 30 images, Categorical cross-
entropy loss function, and Early stopping regularization. For each model, it took approximately
80 minutes to train.

Evaluation

During the training, I saved the parameters for which the model had the lowest loss value on the
validation set. These parameters are then loaded and the model is evaluated on the test dataset.
The following measures are observed [7]:
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Fig. 3 presents evaluation results on test dataset for all three individual models, as well as
for the ensemble model. And the fig. 4 shows a case study of ensemble model predictions. The
top row is for false negatives, and the bottom one is for false positives.
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Figure 3: Evaluation results of classification models on test dataset.
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False negatives

False positives

Figure 4: An example of false negatives (wrongly classified as non-tumor images) and false
positives (wrongly classified as tumor images).

4.2. Image segmentation

Two segmentation models were trained. First was trained from scratch and followed the U-Net
architecture [8] (see in fig. 5), and second was trained using transfer learning and followed the
DeepLabV3Plus architecture with pre-trained ResNet101 as an encoder. Both models shared all
pre-processing steps, as well as all hyper-parameter settings.

Training process

The input was resized to 256 x 256 pixels, augmented via random rotations/flips, random bright-
ness/contrast change to diversify the data [6], and normalized to the interval [0, 1].

Again, training was performed on GPU in Google Colaboratory® environment for 60 epochs,
using the Adam optimizer, with a fixed learning rate of 0.0003, batch size of 30 images. For each
model, it took 40 — 50 minutes to train. A ’smooth’ approximation (meaning that we replace
predicted labels with probabilities) of Dice coefficient was used as a loss function. It belongs to
the subclass of region-based losses. These losses try to maximize the overlap between ground
truth and predicted segmentation output [10].
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where C' is set of classes, () entire spatial domain of predicted segmentation map, y, ground
truth binary indicator of class ¢ of pixel p and g, predicted label (probability) of class ¢ of pixel
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Figure 5: U-Net used in this project.
Evaluation

For both architectures, 5-fold cross-validation on train segmentation dataset (described in section
3) was performed. Therefore I've obtained five models for each used architecture. Again, the
model parameters (weights) for which the loss on validation set was the lowest were used. All five
models were evaluated on wvalidation and test datasets. The quantitative results are available
in tables 1 and 2 and qualitative comparison in fig. 6. Two kinds of metrics were observed:
counting and boundary-based. The counting metrics are computed from the cardinalities of a
fixed confusion matrix. I mainly monitored Dice similarity coefficient (DSC) and Jaccard indet,
which are members of overlap-based subgroup of counting metrics [7].
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From the boundary-based metrics I monitored Hausdorff distance (HD) and Average symmet-
ric surface distance (ASSD). HD is the largest of all distances from a point on one boundary to
the closest point on the other boundary. ASSD represents the average of all shortest boundary
distances between one boundary to any point on the other boundary and vice versa, symmetri-
cally. In both cases, the lower the value, the more similar the two objects are. The downside of
these metrics is their sensitivity to outliers |7].

HD(A,B) = max{rgleajc d(a,B),rgleaBX d(b, A)}, (8)

6
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ASSD(A, B) = %4 AT “’f; , (9)

d(a, B) = mind(a,b), (10)

beB

where A, B are sets of boundary pixels and d(a, B) is the distance of the pixel a to the closest
pixel from set B.

Model H DSC Jaccard HD ASSD

U-Net || 0,83+£0,02 0,75+0,02 13,34+1,52 0,96 +0,24
DeepLabV3Plus || 0,854+0,01 0,77 40,01 11,26+1,38 1,06+ 0,35

Table 1: Evaluation results on validation data. It contains the mean and standard deviation for
all observed metrics computed during the cross-validation across all 5 validation data folds

Nbdd,H DSC Jaccard HD ASSD

UNet || 0,81+£0,01 0,72+0,01 14,42+2,49 1,69 +0,69
DeepLabV3Plus || 0,83 40,004 0,75+ 0,004 11,5140,55 1,04+ 0,26

Table 2: Evaluation results on test data. It contains the mean and standard deviation for all
observed metrics computed across all five models.

5. Implementation details and startup instructions

The project directory containing all implemented scripts, input data, and obtained results can
be downloaded from the project vault. All scrips were implemented using Python programming
language. Specifically, the classification part was done via TensorFlou” and the segmentation
via the PyTorch® framework.

The project directory contains the whole implementation. tumorClassification.ipynb and
tumorSegmentation.ipynb control the data preparation, training process, and evaluation of both
classification and segmentation parts respectively. data directory contains both used datasets, as
well as .csv files with file paths with individual dataset splits. savedModels should contain saved
parameters for all trained models, however, due to their memory requirements, all these models
are available in my GitLab repository?. In savedResults, there are .csv files with validation and
test results for all trained segmentation models. scripts contains several .py scripts with the
implementation of evaluation/visualization functions, dataset classes, etc.

As already mentioned, this project was developed in a Google Colaboratory environment, so
the easiest way to run it, is just by uploading the project directory to your Google Drive and
performing the training/evaluation using the .ipynb files in this environment. Within the .ipynb
files, you might need to adjust the PROJECT PATH variable.

You should also be able to run it on your local machine by just setting the PROJECT PATH
variable to "./’. However, you have to have Python (3.7+) and libraries such as Pandas, Keras,

"https://www.tensorflow.org/
Shttps://pytorch.org/
‘https://gitlab.com/506485/pa026
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Numpy, Sklearn, Pytorch, etc. already installed. Also, the project wasn’t fully tested in this way
due to the long training times.
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U-Net
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Figure 6: An example segmentation outputs. From left to right: Multi-modal input image,
binary ground truth segmentation map, U-Net prediction, DeepLabV3Plus prediction.
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