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Introduction
Every company needs a good system to handle customer problems and questions. This 
system is called a ticketing system. In many companies, people do a lot of the work in 
this system, like deciding which team should handle a ticket or guessing how long it will 
take to solve a problem. But what if an automated system could help with these tasks?

In this project, I wanted to see if machine learning could help make the ticketing system 
better. I tried to make the computer:

1. Choose the Right Team for a Ticket: When someone has a problem, it's important 
to send their ticket to the right team.

2. Guess How Long to Fix a Ticket: It's useful to know how long a problem might 
take to fix.

3. Find Old Tickets that are Similar: Sometimes, old problems can help solve new 
ones.

This report will talk about how I did these things as a proof of concept.

Methodology
These three tasks can be mapped into three separate tasks of natural language 
processing:

Team assignment — multi-class classification of a short text data

Speed prediction — regression of a a short text data

Ticket similarity — similarity of two short texts, sometimes called sentence similarity, 
also bit related to recommender systems and text retrieval

Overall all of these tasks concern natural language processing, which is expected as 
our data was unstructured text. Now, to give a brief overview of the methods and tools 
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used in NLP:

1. Classical Methods for NLP: Earlier methods revolved around statistical techniques 
and rule-based approaches. Techniques such as term frequency-inverse document 
frequency (TF-IDF) and the Bag-of-Words model were widely used. They convert 
text data into a numerical form by representing each document as a vector.

2. Word Embeddings: With the evolution of deep learning, word embeddings became 
the cornerstone of NLP. Tools like Word2Vec, GloVe, and FastText offer pre-trained 
models that represent words in a dense vector form, capturing semantic meaning 
based on context. These embeddings allow models to understand relationships 
between words, like "king" is to "queen" as "man" is to "woman".

3. Transformers: Models such as BERT, GPT, and T5 are built on the self-attention 
mechanism, allowing for enhanced understanding of context. They've set records 
across various NLP benchmarks. Unlike traditional methods which look at words in 
isolation, transformers consider the entire context, making them incredibly effective 
for complex tasks. Additionally they are often used pretrained and further finetuned 
for our downstream tasks.

Overall the goal was to experiment with all of these and compare them.

Dataset
For dataset we used a “dirty” anonymized dataset. Overall we had 24141 records where 
each record contained ticket problem abstract. Out of these records, we had labels, 
specifically team it was assigned to and open/close dates for 4741 records. The rest 
19402 records were unlabeled, thus they only contained the problem abstract.

We performed simple preprocessing of the dataset, specifically:

1. Basic data cleaning — remove record when a column is missing, calculate hours to 
resolve ticket, drop some noisy teams and unify others which are obviously 
supposed to be the same.

2. Merge labeled and unlabeled data while removing duplicates — some records 
appeared in both (this was determined by ticket id and equality of the texts)

3. Split labeled data with ratio 6:2:2 into train, validation, and test sets
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Additionally, we analyzed the texts for stopwords and determined classical english 
stopwords shold be sufficient. We also analyzed lengths of texts in chars and tokens. 
The maximum of character size was 250 characters with mean close to 50. This meant 
that there would be no issues with long texts for Transformer models.

Team Assignment
For team assignment we decided to compare baselines, classical algorithms that 
require structured data, word embeddings, and Transformer model. Overall, we chose 
to tune the metric of f1-score micro-averaged as we were dealing with multi-class 
classification which was imbalanced.

Classical Structured Algorithms
Here we used old school approach of preprocessing the text by splitting into lowercased 
tokens, removing stopwords, converting it into tf-idf matrix and then using algorithms 
that can use with such data. Specifically, we used:

Logistic Regression

Linear Support Vector Machines

Complement Naive Bayes — as it can work well with imbalanced classes

Random Forest

First three algorithms were picked as they can allow us to linearly model the data. 
Random Forest was picked for its ability to model complex relationships. The optimal 
parameters of models were found using grid seach with 5-fold cross validation with goal 
of minimizing our metric.

Word Embeddings
Here we used pretrained word2vec and GloVe word embeddings. We did very simple 
preprocessing of text by splitting it into lowercased tokens. Then we averaged word 
embeddings for all the tokens for each text. Subsequently, we used the same algorithms 
as previously with tf-idf matrix. We also tuned hyperparameters of models as in previous 
task.

Transformer
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Here, we experimented with few Transformers but in the end used Roberta base size. 
But more specifically because of the unlabeled data we leveraged also masked 
language modeling to use this data. Thus, we first split unlabeled dataset with ratio 9:1 
into train and validation and finetuned the model here using masked language modeling 
with early stopping. After that, we finetuned the model for classification task using our 
previous train and validation sets. We also leveraged early stopping here.

Evaluation
For team assignment we decided to compare baselines, classical algorithms that 
require structured data, word embeddings, and Transformer model. We compare metric 
of f1-score micro averaged. For baselines we use model predicting majority class and 
other model giving stratified prediction. Overall for each word embedding model we only 
provide the better one out of word2vec and GloVe

Model F1 micro averaged

Naive Bayes 0.75

Transformer 0.75

Linear SVM 0.73

Word2Vec Linear SVM 0.61

GloVe Random Forest 0.58

GloVe Logistic Regression 0.56

Random forest 0.56

Logistic regression 0.56

GloVe Naive Bayes 0.54

Baseline majority class 0.33

Baseline stratified 0.18

In this evaluation we can see that all the models beat the baselines. However, 
surprisingly the old school models performed the best with Transformer. While 
Transformer had same score as simple Naive Bayes, it was much harder to train the 
model and in the future mantain. These results can most likely be explained by not 
having much data.

Speed Prediction
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For speed prediciton we decided to compare baselines, classical algorithms that require 
structured data, word embeddings, and Transformer model. Overall, we chose to tune 
the metric of root mean squared error as it is standard metric for regression tasks.

Classical Structured Algorithms
The preprocessing is the same as in task of team assignment. However, we used 
models:

Linear Regression with L1 and L2 regularization (Elastic Net)

Linear Support Vector Regression

Random Forest Regression

The first 2 models were chosen to see if we can model the data based on linear 
relationships only. Random Forest was chosen for more complex modeling. We used 5-
fold cross validation with grid search to find optimal hyperparameters.

Word Embeddings
We used the same approach here as in team assignment with same algorithms as in 
previous section.

Transformer
Here, we experimented with few Transformers but in the end used Roberta base size. 
We leveraged the model that was already finetuned on task of masked language 
modeling from team assignment. After that, we finetuned the model for regression task 
using our previous train and validation sets. We also leveraged early stopping here.

Evaluation
We evaluated based on root mean squared error. We additionally used two dummy 
models, where one predicted always mean and other predicting median. Table below 
shows the results. Overall, word2vec embeddings were worse than GloVe so we do not 
include them.

Model RMSE

linear regression 2125

linear svm 2193
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random forest 2204

glove linear regression 2252

glove linear svm 2323

glove random forest 2311

dummy mean 2375

Transformer 2411

dummy median 2474

The results show that simple models performed the best. This can be also explained by 
lack of much data. However, surprisingly. Transformer model performed here even 
worse than baseline. Additionally, this is way worse compared to performance of the 
model on classification. We could not really find some reason why this is happening and 
just accepted that Transformer might not be suited for this specific task, even tho it is 
suited for classification.

Ticket Similarity
In this task we aimed to find similar tickets. However, we lacked labels here and thus we 
used unlabeled, train, and validation datasets as our dataset. And we leveraged simple 
10 tickets from test set for evaluation. A more rigorous evaluation would require 
annotators labeling whole test set and possibly even using cross validation for 
evaluation.

Classical Approach
We leveraged tf-idf vectorization followed by cosine similarity and BM25 (also called 
“tfidf on steroids”) which is state of art in lexical text retrieval algorithm.

Word Embeddings
We leveraged both GloVe and Word2Vec embeddings averaged over tokens followed 
by cosine similarity.

Sentence Transformers
We leveraged GTE Sentence Transformer Bi-Encoder.  We chose this model based on 
Massive Text Embedding Benchmark Leaderboard. We wanted one of the best 

https://huggingface.co/spaces/mteb/leaderboard
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performing model for STS (semantic textual similarity) in base size. We used the model 
to embed the whole ticket problem abstracts and then used cosine similarity.

Evaluation
For proper evaluation we would use metrics such as MAP@10 (Mean Average 
Precision at 10). But this would require labeling data. Since our evaluation sample only 
consisted of 10 tickets, we resorted to doing just qualitative evaluation and counting 
how many similarities made 0 sense, and how similar algorithms were. The results of 
the algorithms were often very similar with just different order.

Overall results from bm25 and tfidf were very similar as was expected. For example, 
recommending ticket with credentials for ticket which is asking for credentials for 
siemens v3 energy was not very useful, see image. 

But very similar recommendations were from Transformer but also embeddings. Overall 
while evaluating this, I found out that I am not sure how to evaluate this. The ticket 
dataset is not very clean and meaningful and labeling by some experts (and or with 
more metadata) would be actually needed. However, based on quality inspection it 
seemed like the Sentence Transformer model was performing the best. This could be 
for example seen when it wouldn’t get confused by words config and configuration 
meaning the same thing as can be seen below.
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Conclusions
In this project we experimented with proof of concept for simple automated ticketing 
system. We investiaged ways to assign ticket to a team, predict the hours it will take to 
resolve the ticket, and lastly finding similar already solved tickets. For all of these tasks 
we experimented with basic approaches that rely on exact matching of tokens using tf-
idf vectorization, word embeddings, but also Transformer architectures.

Future Improvements
As is expected, there are many more improvements that could be done in this project:

clean the data more,

obtain bigger dataset,

try out more algorithms,

try some expert rules to improve models or create rule-based models,

experiment with Cross-Encoders and supervised finetuning for ticket similarity,

do proper evaluation with annotators for ticket similarity,

create proof of concept application using Gradio.

Future Work (Tasks)
It is also important future work that could be done to expand the automated ticketing 
system. For example:

sentiment of ticket problems could be analyzed,
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clustering could be used to find meaningful clusters,

topic modeling could be used to find topics occurring typically,

LLM such as GPT or LLama could be used to interpret and summarize the clusters 
and topics,

LLM could further enhance ticket similarity and straight out based on some 
additional knowledge base answer question what to do with this new ticket.


