PA026: Counterfactual Regret Minimization

Martin Horacek

May 28, 2021

1 Introduction

In games like chess and go, the player can observe the whole state of the game.
These games are called perfect information games. The traditional technique of
solving these games is minimax search that uses heuristic evaluation of nodes
after some depth is reached. Stockfish, one of the best chess Al, uses this tra-
ditional approach. Another technique popularized in recent years by Deepmind
and their AT AlphaZero is a Monte Carlo Tree Search (MCTS) combined with
neural network for state value and policy approximation.

Games, in which a part of the state is hidden to the player, are called im-
perfect information games. They include games like poker, bridge, liar’s dice.
Many real world problems, such as negotiations and auctions, can be modeled
using imperfect information games. The problem of finding optimal strategies
to imperfect information games is NP-hard.

To see why games with hidden information are harder to solve than per-
fect information games, we will compare chess and poker. Consider two chess
openings called Queen Gambit and Sicilian Defense. Optimal strategies in both
openings are totally independent and do not influence each other. Compare
that with having pocket aces preflop in poker. Since we have the best preflop
hand, it would make sense to make a reasonable bet. But if we make this bet
only with pocket aces, then our opponent would know our cards and they would
act accordingly by folding. Therefore to play optimally, we have to balance our
strategy over all hands we could have.

Small imperfect information games can be solved using Linear Programming.
This approach is not feasible for bigger games. In recent years Al Libratus
[2] and Pluribus [3] defeated top professional poker players. Both Als used a
version of Counterfactual Regret Minimization (CFR) algorithm as base of their
strategy. Instead of trying to exploit mistakes of opponent, they approximate
the unexploitable strategy called Nash equilibrium.

2 Algorithm description

CFR [7] is an iterative self-play algorithm. It learns provably optimal strat-
egy. At the core of the algorithm lies the notion of counterfactual regret. The



counterfactual regret for an action A in an infoset I specifies how much we re-
gret playing the current strategy compared to a strategy that is the same for
all infosets except for infoset I, where it plays the action A with probability
1. The counterfactual regret for action A in infoset I is accumulated across all
iterations. The strategy in current iteration is determined using Regret Match-
ing. In regret matching the probability of playing action is proportional to the
accumulated counterfactual regret of that action.

The total regret for a strategy is bounded by the sum of counterfactual
regrets in all infosets. By iterative self-play using the regret matching, we min-
imize counterfactual regrets and therefore we minimize the total regret. It is
proved that average strategy obtained by using this approach converges to ap-
proximate Nash equilibrium. By increasing the number of iterations, we get
closer approximations.

More CFR algorithms were proposed over the years. These algorithms share
same asymptotical bounds on regret, but they were shown to converge faster in
practice. The original CFR, algorithm is often referred to as Vanilla CFR.

The algorithm used to solve Heads-up Limit Texas Hold’em is called CFR+
[6]. Tt changes Vanilla CFR in a few ways. It resets negative accumulated regret
to zero on each iteration and it uses weights for average strategy updates.

Because the average strategy is computed from all iterations, the initial ran-
dom strategy has same weight as the strategy computed in last iteration. It
makes sense to add more weight to recent iterations. This can be also done
by multiplying accumulated values by number less than 1 each iteration. This
approach was proposed in Linear and Discounted CFR [1] paper. Linear CFR
scales both accumulated regret and accumulated average strategy linearly. Dis-
counted CFR allows different weighting for positive regret, negative regret and
average strategy.

Previous CFR algorithms always traversed whole game tree on each itera-
tion. This becomes impossible with big games like No-Limit poker, where the
game tree is too big to traverse even once. A method called Monte Carlo CFR
[5] traverses only a part of the game tree on each iteration. It is proved that
MCCFR converges to the Nash equilibrium. In the paper they proposed two
sampling strategies. The external sampling traverses all actions for the player
whose strategy is updated on current iteration and it samples chance and oppo-
nent’s actions. This version of sampling was used in Als Libratus and Pluribus.
The outcome sampling samples all actions and therefore only one history is tra-
versed on each iteration. One iteration is much faster, but it suffers from high
variance of the update.

Another proposed approach called Deep CFR [4] trains a neural network that
predicts counterfactual regrets. In usual CFR the regrets for infosets are usually
stored in a hash table. Therefore any similarities between infosets cannot be
captured and for big games we have to create abstractions of those games. For
example in poker, similar card combinations are clustered together and treated
as the same combination. Using a neural network, we allow the algorithm to
learn these abstractions on its own.



3 Implementation

The implementation of CFR algorithms that I created in python3 can solve
any extensive-form game specified by implementing the IState interface. These
functions must be provided:

e is_chance() — bool: Returns true iff the chance (nature) decides action in
this state.

e is_terminal() — bool: Returns true iff the state is terminal.
e get_player() — int: Returns integer id of the player that acts in this state

e get_infoset() — Infoset: Returns the view of the game for the acting player.
It can be implemented as a string. All games that I implemented using
IState interface use string as representation of Infoset.

e get_payoff(int id) — int: Returns payoff for player with ’'id’. Can only be
called on terminal state.

e get_available_actions() — List: Returns array of actions available in the
state.

e next_state(action) — IState: Simulates the game rules and returns state
after playing ’action’. If is_chance() is true, then it samples the chance
action randomly.

I implemented four games using IState interface:

e Modified Rock-Paper-Scissors: When using extensive-form games, we have
to use information sets if we want to simulate simultaneous action of both
players. The game is modified by assigning any game, where scissors were
played, value 2. This modification is used because in normal version of
RPS the Nash equilibrium is same as the initial (random) strategy used
in CFR. Therefore to see if the algorithm learns anything, I used this
modified game.

e E-Card: I saw this game in movie Kaiji: The Ultimate Gambler and 1
wandered what is the optimal strategy. I implemented this game using
IState interface and computed its Nash equilibrium using CFR algorithm.
The optimal strategy is to pick random card from the cards in our hand.

e Kuhn poker: This is an extremely simplified version of poker with only 13
information sets. Analytically computed Nash equilibrium for this game is
known and I used it to check that implemented CFR algorithms converge
to it.

e Leduc poker: This is another simplified version of poker. It contains 288
information sets. The deck consists of 6 cards and there are two betting
rounds. Complete rules are described in the docstring of LeducPokerState
class. During algorithm evaluation I used also Leduc poker with 20 cards.


http://ecard.zertukis.com/

I implemented CFR algorithms described in section 2} To implement them
I followed the mathematical description of algorithms in their original papers.
Each algorithm has its corresponding Trainer class. All trainer classes follow
same interface. By calling function train(iterations: int), the trainer runs corre-
sponding CFR algorithm for ’iterations’ iterations. This allows us to stop after
some number of iterations, then check whether the strategy is improving and
then continue with training.

Class CFRUtility contains helper functions that can evaluate strategies and
simulate games.

3.1 Deep CFR

I tried to implement Deep CFR using PyTorch. I did not manage to make it
work. Usually, after several hundreds of iterations a NaN values appear between
weights of the neural network. I checked whether the input is correct and it was.
I found that the main reason for NaN values between weights is the problem
of exploding gradients. I added gradient clipping and it fixed problems with
NaN weights. Unfortunately, the learned strategy did not converge to Nash
equilibrium. There are many hyperparameters and options in Deep CFR and I
think that it would require much more experimenting to make it work.

The incomplete implementation of Deep CFR is in " Leduc Deep CFR.ipynb”
Jupyter notebook.

3.2 Examples

I created several Jupyter notebooks to show examples of how the implementation
can be used. In first notebook I train CFR+ strategy for E-Card game. In
second notebook I train DiscountedCFR, for Leduc poker and it is possible to
play against the trained strategy directly in the Jupyter notebook. The third
notebook contains script that was used for evaluation of algorithms. The fourth
notebook is the same as third notebook, but it uses bigger game (Leduc poker
with 20 cards).

3.3 Installation

My implementation uses NumPy for numerical computations and matplotlib for
plotting of graphs. I used PyTorch for neural networks.
All packages can be installed through pip using the requirements.txt file.

4 Evaluation

There are two standard ways of evaluating strategies for imperfect-information
games. The first practical way is to compare a strategy to other strategies. By
playing many games and computing sample mean, we can determine whether
one strategy is significantly better than other. The other more theoretical ap-
proach is to compute exploitability. The exploitability measures how well the



strategy plays against the best response strategy. The best response strategy
is a strategy that achieves highest expected value against our strategy. We can
see it as if the opponent knew precisely what our strategy is and using this
knowledge he optimized his strategy. For example if we would play rock with
probability 1 in rock-paper-scissors game, then best response is to always play
paper. Nash equilibrium strategy has exploitability 0.

High exploitability was a problem of previous poker Als that could beat
human players in the beginning, but started losing when human players found
out how to exploit Al weakness.

4.1 Exploitability

To compute exploitability I used the fact that best response can be pure strat-
egy. As opposed to equilibrium strategy that has to be mixed strategy. The
best response computation recursively computes best actions for each informa-
tion set by weighting expected values of states in given information set by their
reach probabilities. I compared my exploitability computation with exploitabil-
ity computed by CFR with one strategy fixed and they had same results. My
exploitability computation doesn’t have any parameters and is faster than com-
puting best response using CFR.

4.1.1 Leduc poker

I trained all algorithms for one hour. All algorithms except OutcomeMCCFR

converged to a strategy with low exploitability. OutcomeMCCFR exploitability

was 0.75. In figure [2| we can see how the exploitability decreased over time. In

figure [I] we can see that the biggest decrease in exploitability occured in first

ten minutes of training. The exploitability of random strategy is 4.75. I did not

include OutcomeMCCEFR in the graph as it would make it harder to read.
The Vanilla CFR algorithm converged to the lowest exploitability.

4.1.2 Leduc poker with 20 cards

Because the Leduc poker with 6 cards is quite small game, I decided to com-
pute exploitability for Leduc poker that has 20 cards. I trained all algorithms
for 120 minutes. In figure [3] we can see that ExternalMCCFR converged to
lowest exploitability and much faster than other algorithms. The reason is that
ExternalMCCFR traverses game tree much faster, because it samples chance
and opponent’s actions. Therefore it doesn’t traverse bad actions of opponent.

In figure [4] we can see exploitability in first 10 minutes of training. In the
beginning the exploitability of VanillaCFR decreases slower than for CFR+,
LinearCFR and DiscountedCFR. CFR+, LinearCFR and DiscountedCFR all
give higher weight to recent strategy updates. Therefore they faster forget older
regrets and can improve faster at least in the beginning. If the game was much
bigger, then the exploitability graph for whole training could look as first 2



Figure 1: Leduc poker exploitability
Leduc poker exploitability

—— CFRTrainer
025 CFRPIusTrainer
—— LinearCFRTrainer
020 —— DiscountedCFRTrainer
—— ExternalMCCFRTrainer
=y
S 015
£
[=]
=3
& 0.10 A
005 1
000 i .

T
o 10 20 30 40 50 (]
Taining time {minutes)

Figure 2: Leduc poker exploitability (from minute 10)
Leduc poker exploitability

0.08 4 —— CFRTrainer
CFRPlusTrainer
0.07 4 ~—— LinearCFRTrainer
DiscountedCFRTrainer
0.06 1 ExternalMCCFRTrainer
o
S 005
m
=
[=}
= 004 1
S
wi
0.03 4
002 4
001 4
T T T T T

10 20 30 40 50 B0
Taining time {minukes)

minutes for Leduc poker with 20 cards and VanillaCFR would be outperformed
by other algorithms.

4.2 1v1 comparison

I simulated 250,000 games of Leduc poker between all trained algorithms. All

algorithms significantly won against OutcomeMCCFR. There was no clear win-
ner between remaining algorithms.



Figure 3: Leduc poker with 20 cards exploitability
Leduc poker (20 cards) exploitability

12 4 = CFRTrainer
CFRPIusTrainer
10 1 = LinearCFRTrainer
== DiscountedCFRTrainer
08 - = ExternalMCCFRTrainer

Exploitability
[=]
o

=]
.
L

0.2 4

0.0 A

o 20 40 B0 80 100 120
Taining time {minutes)

Figure 4: Leduc poker with 20 cards exploitability (first 10 minutes)
Leduc poker (20 cards) exploitability

12 = [FRIrainer
CFRPIusTrainer
140 == LinearCFRTrainer
== DiscountedCFRTrainer
ExternalMCCFRTrainer
= 0.8 -
E
B
‘5 06 -
=3
£
wi
0.4
0.2 1

Taining time {minutes)

4.3 Evaluation of simple strategies

To compare clever strategies found by CFR to something simple, I used three
simple strategies: random strategy, always call strategy and check-fold strategy.
Check-fold strategy checks whenever it can and when it faces a bet, it folds. The
table [1] shows exploitabilities of these simple strategies and their result against

Vanilla CFR for Leduc poker. We can see that Vanilla CFR confidently beats
simple strategies.



Exploitability | vs. Vanilla CFR
Random 4.75 -1.45
Always call 2.93 -1.36
Check-fold 2.0 -1.13

Table 1: Evaluation of simple strategies

5 Conclusion

I studied Counterfactual Regret Minimization algorithm and its variants. I read
papers that introduced these algorithms. I implemented many variants of CFR
in python3.6. They are implemented in a way that allows us to easily define a
game and run them to find its Nash equilibrium. I compared implemented CFR
algorithms on Leduc poker and on Leduc poker with 20 cards. I also briefly
commented on reasons why some CFR versions outperformed others.

6 References

[1] Noam Brown and Tuomas Sandholm. Solving Imperfect-Information Games
via Discounted Regret Minimization. 2019. arXiv: 1809.04040 [cs.GT].

[2] Noam Brown and Tuomas Sandholm. “Superhuman AI for heads-up no-
limit poker: Libratus beats top professionals”. In: Science 359.6374 (2018),
pp. 418-424. 18SN: 0036-8075. DOI: |10. 1126 /science . aao1733. eprint:
https://science.sciencemag.org/content/359/6374/418.full.pdf.
URL: https://science.sciencemag.org/content/359/6374/418.

[3] Noam Brown and Tuomas Sandholm. “Superhuman AI for multiplayer
poker”. In: Science 365.6456 (2019), pp. 885-890. 1sSN: 0036-8075. DOLI:
10.1126/science.aay2400. eprint: https://science.sciencemag.org/
content/365/6456/885.full.pdf. URL: https://science.sciencemag.
org/content/365/6456/885.

[4] Noam Brown et al. Deep Counterfactual Regret Minimization. 2019. arXiv:
1811.00164 [cs.AI]l

[6] Marc Lanctot et al. “Monte Carlo Sampling for Regret Minimization in Ex-
tensive Games”. In: Advances in Neural Information Processing Systems.
Ed. by Y. Bengio et al. Vol. 22. Curran Associates, Inc., 2009. URL: https:
//proceedings.neurips.cc/paper/2009/file/00411460£7c92d2124a67ea0f4cb5£85-
Paper.pdf.

[6] Oskari Tammelin et al. “Solving Heads-up Limit Texas Hold’em”. In: Pro-
ceedings of the 24th International Conference on Artificial Intelligence. 1J-
CAT’15. Buenos Aires, Argentina: AAAI Press, 2015, pp. 645-652. ISBN:
9781577357384.


https://arxiv.org/abs/1809.04040
https://doi.org/10.1126/science.aao1733
https://science.sciencemag.org/content/359/6374/418.full.pdf
https://science.sciencemag.org/content/359/6374/418
https://doi.org/10.1126/science.aay2400
https://science.sciencemag.org/content/365/6456/885.full.pdf
https://science.sciencemag.org/content/365/6456/885.full.pdf
https://science.sciencemag.org/content/365/6456/885
https://science.sciencemag.org/content/365/6456/885
https://arxiv.org/abs/1811.00164
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf

[7] Martin Zinkevich et al. “Regret Minimization in Games with Incomplete In-
formation”. In: Proceedings of the 20th International Conference on Neural
Information Processing Systems. NIPS’07. Vancouver, British Columbia,
Canada: Curran Associates Inc., 2007, pp. 1729-1736. 1SBN: 9781605603520.



	Introduction
	Algorithm description
	Implementation
	Deep CFR
	Examples
	Installation

	Evaluation
	Exploitability
	Leduc poker
	Leduc poker with 20 cards

	1v1 comparison
	Evaluation of simple strategies

	Conclusion
	References

