
Dysgraphia detection using machine learning

Vojtěch Formánek, 514324
FI MUNI

September 2023

1 Introduction

In recent years the interest in using machine learning to explore, screen and
diagnose dysgraphia has been steadily rising. Since many of the diagnostic
tools have been (in some form) digitized it has become possible to use more
complex models. The method most widely used are writing tablets and pens
that collect spatial and temporal data. With this aproach one can use some of
the already existing diagnostic methods or theoreticaly any of the participants
handwriting. As is the case with our dataset, and in most of the studies we will
be referencing, the data collected are of childrens handwriting.

Dysgraphia is diagnosed using a plethora of methods, here we are interested
only in data extracted from the handwriting itself. Most of the studies focus
on extraction of static features from the data. Theese can range from simple
features such as min, max speed of the handwriting, average tilt or on/off paper
ratio . More complex metrics are used, but they do not always yield better
results. A variety of models are then used to classify the data or for feature
extration and dimension reduction (most commonly Random Forests, SVMs
and PCA).

Though they can yield good results, there have been some attempts to ex-
plore the usecases of well known neural network architectures, mainly for clas-
sification. Notably CNNs, LSTMs (and a VAE) or, recently, a combination of
both (though this has been published after the inception of this project). Here
we focus on using an LSTM-based architecture, comparing it to a classification
method with simple features extracted from the data and a combination of both.

1



2 Data collection

2.1 The original dataset

Figure 1: The dataset is indeed extremely
unbalanced, also age 5-7 has no representa-
tion of dysgraphics.

The entire dataset contains around
500 hundred participants, homewer
handwriting isn’t available for all of
them so a subset of 490 was used. It is
also extremely unbalanced. The data
was collected on WACOM tablet with
a pen, together collecting seven fea-
tures - x, y coordinates, sample time,
if the pen was touching the screen, az-
imuth and tilt, pressure on the tip of
the pen.

A writing task was put on top of
the tablet, in which the participants
had to connect nine dots. First, based
on an example shown before, then
from memory. The dataset contains
10 tasks per participant and some adi-
tional information, which we shall not
use, and the diagnosis, a binary class.

2.2 Additional datasets

Figure 2: The additional dataset is bal-
anced, although includes ages above our
original.

Drotár and Dobeš gathered a dataset
with a similar WACOM tablet, thus
the structure of the data was sim-
ilar to the original dataset, making
conversion relatively simple. On the
other hand, the data collected differs.
The task contains several hand writ-
ten existing and made up words. The
difference was not investigated fur-
ther, since only subsets of the indi-
vidual tasks are used to feed into the
LSTM models, which are the main fo-
cus of this project.

2



3 Models

3.1 Classification of extracted features

We extracted simple features as in Drotár and Dobeš (2020). Their purpose was
to train a baseline Random Forest classifier on them and compare the results
to the models trained on raw data. A random forest is a meta estimator that
fits a number of decision tree classifiers on various sub-samples of the dataset
and uses averaging to improve the predictive accuracy and control over-fitting
(Pedregosa et al., 2011). Random forests are popular in research partially due
to the relatively high interpretability of their structure.

3.2 Classification of time-series

Other studies use LSTMs for feature extraction (Masood et al., 2023) or to
approximate a score related with dysgraphia (Bublin et al., 2022). The question
then arises if it is feasible, or at least possible, to train such network to predict
dysgraphia directly from writing.

Firstly we constructed a baseline architecture that consists of two LSTM
blocks and a single neuron fully connected layer (Masood et al., 2023). Then
experimented with adding more LSTM blocks and fully connected layers on top.

And adapted an Quick, Draw! competition LSTM-architecture with 1-D
convolutional layers. Consisting of two LSTM, 1-D convolution and MaxPooling
blocks with two fully connected layers on top.

4 Data preprocessing

Since there is no representation of dysgraphics in the ages 5-7 and the additional
dataset also does not contain any, we decided not to use them, and save them
for the post-hoc analysis. Both of the datasets were split into a hold-out test
set (20%), and further into validation (10%) and train (80%) sets. Splitting
was done on participant level, so that there are no overlaps between the sets.
Because of the small size, this prevents the models overfitting a given individuals
writing.

None of the preceding studies describe preprocessing in depth, thus we com-
pare using the raw data, filtering with Fast Fourier Transform and and a second
order Butterworth filter. Using resample poly (upsample and downsample to
final frequency of 20 Hz) and butter (critical frequency of 5 and sampling freq
of 15 Hz; Virtanen et al., 2020).

Originally we used Fourier-series based estimation, described above, to deal
with the inconsistent sampling rate of the tablet (which ranged from 200 Hz to
1 Hz), which also removed some of the noise. A simpler solution, is to split the
series into subseries in places where the sampling rate is smaller than 10 Hz.
This is the solution used in the final state of the project. Even though it does
add additional complexity when handling the data, it does not place too stress
on the resampling.

3



Instead of using the absolute values for x and y we used the first order
derivative (speed) in each coordinate respectively. Given that the tasks were
printed out and put onto the screen in different places, the absolute values would
provide unnecessary noise for the model.

Homewer we did not remove any outliers, given the scarcity of the data and
the expertise required to do so.

4.1 Extraction of static features

We extracted simple features as in Drotár and Dobeš (2020). Their purpose was
to train a baseline Random Forest classifier on them and compare the results
to the models trained on raw data.

The total number of features extracted was 175, though some of them obvi-
ously provide no relevant data to the model (time min which is always 0). 52
were removed, thus the classifier was trained on the remaining 123. The features
were scaled and combinations of oversampling, undersampling were tried out.

4.2 Raw data and the locality of dysgraphia

Figure 3: A reconstruction of the input.
Light blue represents movements in air.
Dysgraphics tend to have increased in-air
movements.

Since the chosen architectures require
inputs of fixed length, it is neccessary
to determine the correct length of the
sequence. Unlike classification on in-
puts that have, in some form, seen the
whole task. The question then arises
if we can detect dysgraphia in smaller
patches of a given writing sample.
This potentially introduces a lot of
noise into the training data, that is
hard to remove.

Firstly we used length of 100 de-
scribed in Bublin et al. (2022) then
extended to 120, 240 and 480. The
last is the 95 percentile of the task
length in the original dataset, thus
extending above that would only pad
most of the sequences. The sequences
were then split and used with over-
laps, according to the given total
length. Standardization was done lo-
cally on each sequnce, and globally,
but no difference was found. Similarily replacing total time with relative from
the start of the sequence, as is standard in time-series prediction, did not make
a difference.

4



5 Evaluation

5.1 Metrics

Following the previous studies standard metrics for classification are:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2∗Precision∗Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN

Sensitivity = Recall = TP
TP+FN

Specificity = TN
FP+TN

AUC is calculated as the area under the Sensitivity(1− Specificity) curve.

Unweighted F1 is used, since the dataset is imbalanced the normal diagnosis
would have a larger share on the score, whilst we want to mainly highlight the
dysgraphic.

A baseline for all models is a dummy classifier that predicts based on the
prior distribution of the classes on a balanced dataset. It’s results Accuracy =
Precision = Recall = F1 = 0.5. This is a more difficult target, given the fact
that our dataset is greatly imbalanced. But since a variety of techniques, such
as oversampling and class weights is used, we consider this adequate.

5.2 Classification of extracted data

If trained only on the original dataset, the Random Forest Classifier (RFC)
is unable to learn and returns F1 = 0, classifying everyting as normal, i.e.
Recall = 0. This is a known problem with similarly structured tasks. Even if
we add the additional dataset we’re unable to increase Recall and thus the F1.
Note that we used only features extracted from the handwriting to train the
model.

Additionally we were able to replicate results from Drotár and Dobeš on
their data only, with a 5-fold crossvalidation. Showing that classification with
the features we extracted is indeed possible.

5.3 Classification of time-series data

The baseline LSTM architecture consisting of two LSTM blocks and a single
output neuron, similarily to the classifiers, has trouble dealing with the original
dataset only returning F1 scores around 0.48. Unlike the classifiers on extracted
data, none of the architectures fared better on the additional dataset, or the
combination. None of them were able to beat the baseline classifier F1 by any
meaningfull margin (difference was less than 0.05). Using larger architectures
with more fully connected layers led to quicker overfitting.

5



Figure 4: A typical ROC curve for the
LSTM model. Topleft curve would would
be close to the ideal state. Instead, go-
ing through the middle shows the weak dis-
criminatory abilities of the models

In most cases the loss on the val-
idation set does not decrease after
the first few epochs, signifying early
overfitting. Plotting the resulting F1
scores follows the bell curve centered
around 0.5 or the ratio of dysgraphic
to normal. The AUC curve (Fig. 4)
also shows that the model discrimi-
nates poorly.

Also, since the individual se-
quences overlap we can observe how
the network treats adjacent ones. In
line with the above mentioned results,
it can classify the first and last of 4 se-
quences as dysgraphic and the inner
two as normal. Even though theese
have 85% overlap. Further after vi-
sual inspection, we were not able to
find any meainingfull differences be-
tween, for example, false negatives
and true positives, or true negatives.

6 Conclusion and Discussion

The networks are unable to learn on any of the three combinations of datasets.
This might be to the small size, but given the relative scarcity of datasets of
dygraphic handwriting, it is probably still preferable to use LSTMs as feature
extractors, or in ensembles.

On the other hand studying the writing directly, not holistically, might lead
to design of more expressive writing tasks and to deeper understanding of the
”curve level” features of dysgraphia.

6



References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Retrieved from https://www.tensorflow.org/ (Software avail-
able from tensorflow.org)

Bublin, M., Werner, F., Kerschbaumer, A., Korak, G., Geyer, S., Rettinger,
L., & Schoenthaler, E. (2022). Automated dysgraphia detection by deep
learning with sensogrip. arXiv preprint arXiv:2210.07659 .

Drotár, P., & Dobeš, M. (2020). Dysgraphia detection through machine learning.
Scientific reports, 10 (1), 21541.

Masood, F., Khan, W. U., Ullah, K., Khan, A., Alghamedy, F. H., & Aljuaid,
H. (2023). A hybrid cnn-lstm random forest model for dysgraphia classi-
fication from hand-written characters with uniform/normal distribution.
Applied Sciences, 13 (7), 4275.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12 , 2825–2830.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-
napeau, D., . . . SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17 , 261–
272. doi: 10.1038/s41592-019-0686-2

Waskom, M. L. (2021). seaborn: statistical data visualization.
Journal of Open Source Software, 6 (60), 3021. Retrieved from
https://doi.org/10.21105/joss.03021 doi: 10.21105/joss.03021

7


