
Precious metals price predictor

Pavel Dostál

September 2020

1 Introduction

Goal of this project was to explore possible application of artificial intelligence
in such seemingly chaotic and random setting as stock exchange. More precisely
to be able to predict the future price in certain time horizon for silver from data
set containing previous data not only of precious metals, but other commodities,
FOREX, indexes and stocks.

2 Existing solutions

Existing solutions deals primarily with stock prediction, prediction of commodi-
ties can be found marginally in some commercial software. However stock pre-
diction has similar core as commodity prediction therefore we decided to mention
here stock prediction solutions.

2.1 Commercial software

Stock market prediction is area in which commercial companies pursue for very
long time, long before invention of computers or artificial intelligence. However
with possibilities of machine learning they started to develop commercial soft-
ware used internally or as paid product (iknowfirst, finbrain). To development
of the commercial software went amount of money and time and it is kept in se-
cret. In the public is not known not even what data they use nor used methods
or algorithms.

2.2 Non-commercial software

Usually to this area belongs quite simple software from tutorials which is not
actually useful in market prediction (if it were very useful, creator would use it
to generate great sums of money without any effort) but it serves to learning
purposes. Some examples are (clickable links):

• Stock Market Predictions with LSTM in Python

• Stock Price Prediction Using Python & Machine Learning

1

https://iknowfirst.com/
https://finbrain.tech/
https://www.datacamp.com/community/tutorials/lstm-python-stock-market
https://medium.com/@randerson112358/stock-price-prediction-using-python-machine-learning-e82a039ac2bb

• Stock Prices Prediction Using Machine Learning and Deep Learning Tech-
niques

• Stock Prediction in Python

• Stock prediction using recurrent neural networks

3 Implementation and algorithms

3.1 Data

In this project two datasets were used, both attached to this document. The
first one is dataset containing daily prices of stocks, commodities, indexes and
FOREXes, total 40 values daily for 12 years (01.01.2008-01.01.2020) loaded from
Yahoo Finance through their DataReader and their API.

The second dataset is downloaded from Stooq and contains hourly informa-
tion about prices of circa 1 000 stocks, commodities, indexes and FOREXes for
half year, with total amount of more than 2 000 000 entries.

To increase precision two approaches of data preprocessing were chosen:
ARIMA and FFT which are then appended to the data as new columns.

ARIMA (Autoregressive integrated moving average) is a method for finding
recurrences and dependencies in a sequence.

FFT (fast Fourier transformation) is a function which takes a sequence and
creates a series of sine waves with different amplitudes and frames. When the
sine waves are combined they approximate the original function. In this project
are used FFT with 3, 6, 9 and 100 components to extract general trend of
sequence and smooth fluctuations.

Both dataset were divided into train section (first 70% of the whole), vali-
dation part (20% of the whole) and testing part (last 10%).

3.2 Neural networks

We will use TensorFlow library to create in total 7 types of neural networks
which we first explain them and then show how they are implemented. In Section
subsection 3.4 we compare how they fared. The time horizon of prediction is
set to be 24 hours in future for hourly data and 14 day in future for daily data.

Dense model
The dense model is the simplest trainable model imaginable, using inputs

from the last time step to predict all future steps independently as can be seen
in Figure 2. In the code shown below we just make one Dense layer and under
that another dense layer with shape so that we have number of future steps in
frecord with ncol columns of data. Dense layer is a simple neuron layer where
each neuron is connected to each neuron in the next layer.

def gen dense model (f r e c o r d , n co l , dropout , un i t s) :
return t f . ke ras . Sequent i a l ([

t f . ke ras . l a y e r s . Dense (uni ts , a c t i v a t i o n=’ r e l u ’) ,

2

https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/
https://www.analyticsvidhya.com/blog/2018/10/predicting-stock-price-machine-learningnd-deep-learning-techniques-python/
https://towardsdatascience.com/stock-prediction-in-python-b66555171a2
https://towardsdatascience.com/stock-prediction-using-recurrent-neural-networks-c03637437578
https://finance.yahoo.com/
https://stooq.com/db/h/

Figure 1: FFT with 3, 6, 9 and 100 components as used in preprocessing

Figure 2: Dense model

t f . ke ras . l a y e r s . Dropout (dropout) ,
t f . ke ras . l a y e r s . Dense (f r e c o r d ∗ n co l ,

k e r n e l i n i t i a l i z e r=t f . i n i t i a l i z e r s . z e r o s) ,
t f . ke ras . l a y e r s . Lambda(lambda x : x [: , −1: , :]) ,
t f . ke ras . l a y e r s . Reshape ([f r e c o r d , n c o l])

])

GRU/LSTM model
Both GRU (Gated Recurrent Unit) and LSTM (Long Short Term Memory)

belong to type called RNN (Recurrent Neural Network) which is charakterised
by the fact that output from previous step is fed directly to the next step as
can be seen in Figure 3. GRU and LSTM tried to asnwer vanishing gradient
problem, which caused that for the earliest layers grandient computed by loss
function was insignificant and layers were not able to learn in longer sequences.

3

Both GRU and LSTM propagate gradients to further layers, making it more
suitable for longer time sequence. For further details look at Cho et al., 2014
for GRU and LSTM at Hochreiter & Schmidhuber, 1997.

Figure 3: RNN model

The code is similar for both GRU and LSTM model, on the top of the output
dense layer we put layer specific to the model.

def gen gru model (f r e c o r d , n co l , dropout , un i t s) :
return t f . ke ras . Sequent i a l ([

t f . ke ras . l a y e r s .GRU(units , r e tu rn s equence s=False ,
a c t i v a t i o n=’ r e l u ’ , dropout=dropout) ,

t f . ke ras . l a y e r s . Dense (f r e c o r d ∗ n co l ,
k e r n e l i n i t i a l i z e r=t f . i n i t i a l i z e r s . z e r o s) ,

t f . ke ras . l a y e r s . Reshape ([f r e c o r d , n c o l])
])

def gen lstm model (f r e c o r d , n co l , dropout , un i t s) :
return t f . ke ras . Sequent i a l ([

t f . ke ras . l a y e r s .LSTM(units , r e tu rn s equence s=False ,
dropout=dropout) ,

t f . ke ras . l a y e r s . Dense (f r e c o r d ∗ n co l ,
k e r n e l i n i t i a l i z e r=t f . i n i t i a l i z e r s . z e r o s) ,

t f . ke ras . l a y e r s . Reshape ([f r e c o r d , n c o l])
])

Autoregressive RNN (simple RNN, GRU and LSTM)
Recurrent Neural Network was already mentioned in previous chapter, how-

ever all models up to this one had one serious disadvantage, they generated
output steps independently. However it may be useful use prediction for step

4

https://arxiv.org/abs/1406.1078
https://www.bioinf.jku.at/publications/older/2604.pdf

n to help predicting step n + 1 what is exactly what autoregressive RNN does
as can be seen in Figure 4. Model predict value for step 0 and uses predicted
value to predict step 1. That’s why there are two arrows from models (”white
boxes”) on prediction steps.

Figure 4: Autoregressive model

The code is encapsulated in the class Arr Rnn. Function warmup is used
to initialize the model which return single step prediction and state of RNN.
Function call then can give prediction in future using state of RNN and value
given by RNN.

class Arr Rnn (t f . keras . Model) :
def i n i t (s e l f , f r e c o r d s) :

super () . i n i t ()
s e l f . f r e c o r d s = f r e c o r d s

def warmup(s e l f , inputs) :
x , ∗ s t a t e = s e l f . rnn (inputs)
p r e d i c t i o n = s e l f . dense (x)
return pred i c t i on , s t a t e

def c a l l (s e l f , inputs , t r a i n i n g=None) :
p r e d i c t i o n s = []
p r ed i c t i on , s t a t e = s e l f . warmup(inputs)
p r e d i c t i o n s . append (p r e d i c t i o n)

for n in range (1 , s e l f . f r e c o r d s) :
x , s t a t e = s e l f . n e u r o n c e l l (p r ed i c t i on ,

s t a t e s=state , t r a i n i n g=t r a i n i n g)
p r e d i c t i o n = s e l f . dense (x)
p r e d i c t i o n s . append (p r e d i c t i o n)

5

p r e d i c t i o n s = t f . s tack (p r e d i c t i o n s)
p r e d i c t i o n s = t f . t ranspose (p r e d i c t i o n s , [1 , 0 , 2])
return p r e d i c t i o n s

However you might noticed that in previous code was not mentioned which
type of RNN is used and how it is added. In the class we have several functions
which can add simple RNN, stacked RNN, LSTM and GRU layers as they were
dealt in previous chapter. Difference is that here they give not only resulting
value, but also their state. Below example for LSTM, other three can be found
in the code itself.

def put_lstm(self, units, dropout):

self.neuron_cell = tf.keras.layers.LSTMCell(units,

recurrent_dropout=dropout)

self.rnn = tf.keras.layers.RNN(self.neuron_cell,

return_state=True)

self.dense = tf.keras.layers.Dense(num_features)

3.3 Bayesian optimization

Setting of neural network is dependent on many factors, such as dropout and
learning rate, number of neurons on each layer or number of layers. Since gener-
ating and training one model might be time consuming dependent on variables
mentioned above and dataset Bayesian optimization was chosen to compute the
best combination as possible.

Variables which are subject to Bayesian optimization are dropout and learn-
ing rate, which specify how quickly the model learns and how quickly it discards
pattern from learning history. Variable units gives how many units of neurons
there are, from 10 to 1000.

Optimization score can be evaluated according to many metrics such as
Euclidean distance, log loss or binary cross-entropy. We evaluated Bayesian
optization according to mean square error (MSE).

We use library BayesianOptimization and it is enough to specify the func-
tion which result should be optimized and bounds between which can be argu-
ments of function as shown in the code below.

pbounds m = { ’ un i t s ’ : (0 . 1 , 0 . 9 9) ,
’ l e a r n i n g r a t e ’ : (0 . 0 1 , 0 . 2 9 9) ,
’ dropout ’ : (0 . 0 1 , 0 . 299)
}

dense opt im i z e r = Bayes ianOptimizat ion (
f=eva l dense mode l ,
pbounds=pbounds m ,
verbose =1,
random state =1,

6

https://keras.io/api/losses/

)

3.4 Evaluation

To evaluate different types of neural network we decided to test them on data
described in Data section.

3.5 Test daily

First we launched evaluation tests on daily data from Yahoo Finance. For all
7 models were variables set to 14 days, number of units 64, dropout 0.1. We
predicted for each step in data the next 14 days and this value we compared to
the actual values.

Figure 5: Example of 14 days prediction, on x axis days from the start, on
y normalised price of silver bullion SI=F, green dots are actual price, orange
crosses predicted value

In the table below we can see first test results from all 7 models, the names
and order are as were listed in this documentation. The best results (smallest
mean square error) we obtained from Autoregressive GRU and GRU, which
both had the smallest MSE.

loss: mean absolute error
Dense 0.0465 0.1648
GRU 0.0476 0.1597
LSTM 0.0687 0.1984
AR LSTM 0.0570 0.1711
AR GRU 0.0457 0.1592
AR SiRNN 0.1309 0.2697
AR StRNN 0.0626 0.1833

3.6 Hourly test

In the second test we made on hourly data, only difference on variables was that
we predicted 24 hours in future, not 14 days as in previous example.

7

Figure 6: Comparison of mean square error for various types of model

Here the results are more evenly distributed, Dense and GRU both have
smallest MSE, other models fared worse.

loss: mean absolute error
Dense 1.0736 0.7837
GRU 1.1269 0.8089
LSTM 1.4180 0.9153
AR LSTM 1.4477 0.9246
AR GRU 1.4222 0.9157
AR SiRNN 1.4487 0.9265
AR StRNN 1.4344 0.9196

3.7 Bayesian optimization: multiple steps

In the last two tests we launched Bayesian optimization on models shown in
previous section, to tweak hyperparameters of each type of model to get the
best results. In this test we predicted multiple values from future (14 days or
24 hours) in the test below only on one step in future.

In following table there are results obtained from optimizing hyperparame-
ters units (ranging from 10 to 1000), learningrate (0.01, 0.299) and dropout
(0.01, 0.299) which change precision of the model. In the table we show only
the final MSE for test part of each dataset.

8

Figure 7: Comparison of mean square error for various types of model

MSE - daily MSE - hourly
Dense 0.1522 0.7403
GRU 0.1472 0.7312
LSTM 0.1488 0.8207
AR LSTM 0.1611 0.8233
AR GRU 0.1582 0.7858
AR SiRNN 0.1940 0.8087
AR StRNN 0.1833 0.8241

As one can see from the table, the least MSE for both datasets had GRU
model, however the difference in MSE was not large for Dense and LSTM model.
Autoregressive models fared worse, the best from AR models - AR GRU differed
from the best model in total for ≈ 8%.

From these result we find important to mention and comment hyperparam-
eters which Bayesian optimization found as the best in the range. For Dense,
GRU and LSTM units were close to the number of columns in the dataset (for
daily it was around 40 and for hourly it was maximal value 1000), learning rate
from 0.09 and 0.105 and dropout around 0.1. Autoregressive models on the
other hand worked better with higher number of units (120 for daily, 1000 for
hourly), learning rate was also from 0.09 and 0.105 but dropout was set as the
lower bound 0.01.

9

3.8 Test one step

The last test was using LSTM mode to predict data one step in future and see,
if we are able to predict correctly if price goes UP or down. We used Bayesian
optimization as in the last section.

Variables which are subject to Bayesian optimization are dropout and learn-
ing rate, units (from 50 to 5000) and shrinkage which determines how fast does
the number in the next layer shrink, i.e. for shrinkage 0,5 the following layer
will have half of neurons which actual layer has.

Optimization score can be evaluated according to many metrics such as
Euclidean distance, log loss or binary cross-entropy. We evaluated Bayesian
optization according to binary cross-entropy, probability that prediction and
actual price both goes up or down from current position.

| iter | target | dropout | learn r | n. neuron | shrinkage |

| 1 | 0.5357 | 0.2081 | 0.07203 | 0.01011 | 0.3093 |

| 2 | 0.5536 | 0.07323 | 0.009234 | 0.1944 | 0.3521 |

| 3 | 0.5417 | 0.198 | 0.05388 | 0.425 | 0.6884 |

| 4 | 0.5238 | 0.102 | 0.08781 | 0.03711 | 0.6738 |

| 5 | 0.5238 | 0.2082 | 0.05587 | 0.149 | 0.2061 |

| 6 | 0.5517 | 0.3996 | 0.09683 | 0.3203 | 0.6954 |

| 7 | 0.5417 | 0.4373 | 0.08946 | 0.09419 | 0.04866 |

| 8 | 0.5357 | 0.08475 | 0.08781 | 0.1074 | 0.4269 |

| 9 | 0.5476 | 0.478 | 0.05332 | 0.695 | 0.3224 |

| 10 | 0.5755 | 0.3426 | 0.08346 | 0.02811 | 0.7526 |

Max. score: 57.54761904761905 %

Figure 8: Bayesian optimization in praxis, output from the program

In the result table we can see 10 iterations of Bayesian optimization with
specific variables for each iteration. The max score is mentioned probability,
that prediction correctly determines that prices went up or down.

he aim for this project was to reach at least 55 % success rate on determining
up and down changes. We used one dataset to compare and evaluate results
with results of this project.

Simple method saying that if previous change was up or down, then the next
change will be the same type when tested on data set showed success rate 48,95%
for silver and 49,61% for platinum. We could always vote for opposite change
with which we would obtain success rate 51,05% and 50,39% respectively.

Using only the historic data of the given precious metal on manually made
neural network is a common practice for non-commercial software. Using their
design of recurrent neural network (5 layers with 20,13,8,5,1 neurons) we were
able to obtain success rate equal to 53,67% on given data for silver.

Using the data from the whole dataset (consisting of 42 columns of values)

10

but with previously mentioned neural network design we were able to obtain
result 53,97% for silver.

When combined the whole dataset, preprocessed data and Bayesian opti-
mization making dynamic design of neural network we were able to obtain result
57,55% for silver (details about settings in the result table)

4 Conclusion

In this project we tried to predict prices of silver for several steps in future
with several types of neural network and compare how they are useful among
themselves and in absolute numbers. To improve precision we optimized hyper-
parameters in neural network by Bayesian optimization.

In our experiments the best results achieved model using GRU (Gated Re-
current Unit). We improved scores of all models by optimization. However the
results also showed that the price of silver is so volatile that only with informa-
tion from history, even though that we may take houndred of different values,
is still very difficult to predict in the future. As we can seen in the example
shown in Figure 9 the model can predict correctly the direction of the price (up
or down) and sudden change in price which will came, however it cannot predict
more precise values according to which would be possible to invest.

In conclusion we successfully showed how to use 7 different types of neural
network to predict price of silver in the next x steps and how to improve quality
of predicted solution by using Bayesian optimization and everything is available
and able to launch completely online, therefore this document may serve as
more advanced manual compared to tutorials we mentioned in section Existing
solutions.

Figure 9: Prediction for 14 days for daily data, y is normalized silver price, x
number of days, green dots are actual price, orange crosses predicted value

5 Install: how to?

The documented code and datasets are attached in the folder as this documen-
tation. The program can be launched on system with working Python (3.7+)
and libraries such as Pandas, Keras, Numpy, Sklearn, bayes opt. But the easiest
way is to run the code in online Python interpreter Google Colab.

11

	Introduction
	Existing solutions
	Commercial software
	Non-commercial software

	Implementation and algorithms
	Data
	Neural networks
	Bayesian optimization
	Evaluation
	Test daily
	Hourly test
	Bayesian optimization: multiple steps
	Test one step

	Conclusion
	Install: how to?

