Generating MIDI music

Ales Calabek, 469489

spring 2021

1 Introduction

The goal of this project is to generate classical music with an LSTM architecture
of neural networks using symbolic representation of music in the MIDI format.

The most common way to store music is by encoding the audio waveform
tracking the change of the amplitude in time. To properly capture all details of
the sound the sampling rate has to be sufficiently high, usually around 48 kHz,
i.e. 48,000 samples per second. This approach results in relatively large file size
since much of the information is redundant — sound is periodic oscillation and
there can be thousands of identical cycles before a significant change.

On the other hand, symbolic representation describes music on a more ab-
stract level, only storing qualitative information such as pitch, duration, volume,
timbre, etc. Besides the smaller file size, a great advantage of the symbolic rep-
resentation is that we can work with it in the form of text and apply common
NLP techniques.

Nevertheless, generating good music is a very hard problem comparable to
generating poetry or other long and cohesive texts. The main difficulty lies in
the development of a musical motif, phrasing and the general structure over the
whole piece of music [1].

In this project, I compare my results with two articles [2][3] that implement
a solution using a Generative Adversarial Network (GAN) and a Variational
Autoencoder (VAE).

2 Theory

In order to use the LSTM model we first need to encode the MIDI files into a
suitable text representation. I used the py-midicsv tool to convert the MIDI into
a CSV format of which you can see an example in Figure[} For this project the
most important rows are the ones that contain the Note_on_c event indicating
that a note has been played. The other attributes on this row specify the Track
number, Time, Channel, Pitch and Volume of the note.

To further optimize the data size I have discarded the irrelevant control
sequences and extracted only valuable data into a custom ABC notation. ABC
notation is a simplified form of writing down music mainly used for simple

1, 1920, Tempo, 472404

2, 1920, Note on ¢, 0@, 65, O
2, 1920, Note on c, 0, 64, 37
4, 1935, Control c, 0, 64, 0
4, 1998, Control c, 0, 64, 127
2, 2040, Note on c, 0, 64, 0
2, 2040, Note on c, 0, 55, 34
2, 2160, Note on c, 0, 55, 0O
2, 2160, Note on ¢, 0, 60, 34
2, 2280, Note on c, 0, 60O, O
2, 2280, Note on c, 0, 64, 32

Figure 1: Every row in the CSV file contain at least three fields — Track number,
Time, Type of event — and optionally further fields depending on the type of
the event.

children’s songs. However, it is not suitable for complete description of a piece
of classical music. I have adopted the basic idea of a note followed by its length
and a delimiter indicating progress in time. Furthermore, every note is aligned
to a multiple of a 32nd note which I have chosen as the base unit of time. For
an example of this notation see Figure

As the final encoding step, I one-hot encoded the text and split it into
training sequences.

The model I am using in this project is a Long-short term memory (LSTM)
neural network. The advantage over standard Multilayer Perceptron is its ability
to work with sequences, and compared to a simple Recurrent Neural Network
it can take longer history into consideration.

The method of generating music with this model is to first approach it as
a classification problem — predicting the next character based on a sequence of
preceding characters. The LSTM internally learns a distribution on the charac-
ters and we can then randomly sample from this distribution to generate new
text. What follows is a simple conversion from text back to MIDI.

B>y BOS B>K POy BSy BVy BYy BVy BSy BVy BSy BOy BSy BJy BMy BLy BJy BOw<wLwOwTw YHe 6Je 6Le 6Mn {ORMBLE 6Q= 616 60n ZQy BOY
BMy BLy BMy BLyOe BJy BHyQe BJy BHySe BGy BEeTn 6Ne BVBTROVSH 6Xe 6Q6 &NyVn BLy BN6 BXy BJeVy BTy POeSB POy BCeMeQy BSy
BEeLeTy BSy BGeJeTy BVy BHeHnXy BVy BXy BIBZyHRGH[e 6Le01Se GEGT6 6InMyQe BLy BMAVy BLyTy BJySy BHyQy BG60On BMy P<eHiLe ROy
B>eJMy BLy B@eFeMy BOy BAnEGHeQy BOy BJeMeQy BCRSYAB@SCHTp BOy BEeHeMy BLy B>6M6 BEy BCnGyJe BHy BJ10pSt BEy BCy BAy B@BCU
BAY B@yTe B>y B<BVe B>y B<yCeXe B;y B96EeYn 6>eGe B[BYBEeHnX6 6Bele PIBHRCYGOVO BEy BFyLeln BCy B=eE6 Bly B>eInly BYy BEX6
BLy BIyIn BHy P@Ge By BLv]y Bly PEyYp BGy PHYOe BJy HyJ1Qe BGy BEySe BCy BHeTnXn BGy BHy BERVBZYTRLYSG[p BJy BHyXe BGy
BHBQO BEy BGyVn BHy BJyZu BHyXy BGYVy BEYTy BCiSely BYy B7eXy BVy B9eTy BVy B;eJeTy BSy B<nLeQy BTy BNeSy B>BQy<B;60n dee
BQBOP9ENG BTy P>nSe BQy PLEPG B@y B>YQnXe B<y B;eVe BSy B@eQyTy BOYSy BBeNeQy PPy P>eDeMeQy BSy P<eEnLeTB BNy BALInQy
BGBPYEBDG6Se BLy B@HeNYQy BPySy BB6QyT6 BPy B>1GnQyYe BSy BPyXe BHyNy B@eGyPyVi BEyQy BAeD6Se 6@yE1Ty B>YySy B@1SATBST yDe
BQy B9E1QU b6He 6Je 6CeLe BEeMn 6Ge PBOPRMBHNLG 6Qe BIPBHPRGHIS 67eLeOn 69€ED BQy B;el10y BMy B<nLd 6CelLeOe B>P<P;6I1NeQe
6@e06Se 696HO6TN 6>nEeNe BVBTRL1PeSH PRy P>YQiTe B<y PB;6JeVe 6:£0eXe 69eQeYn 67eSe P[RYRIOSTNX6 6BeEe]e BVBTRCEGESHVD
b6@eIeXe[n 6>6InQ6 Bly BVnly BLPYYIRB@EHOXD BXy BAeMeVyle BTy BCnGdSOHVG bLn[e~e BERCRAGUe]e BMy BFeLyVely BIyYy B@dIeXo[y BYy
BEnUely BXy BVeYy BFy[y BEyXel[alBlaCyYBIBAYQe]B B@yUy BABEeVy B>yl[y BCeGeXaYBX{ yEeIeLe BVy B>oInNeVe 60e BLPBIBHOQN &Ne

BSBQBGO06 @y B>yLnTe B<y B;YNB BOyNy B7yLySn B6yJy 46Ho BTy B@eSy BQy BBEOy BNy BCiLyOs BJy BL1Qe BJy BEyHySe BCYGY
BBBGEYJATNn BCy B>€ER BBYVBTRCHCOSH BQy BGeOyXe BMy BHeLyQd BOy BIeMyVn BQy BLNOA BXy BVy BMBTYLBJI6SY BQyTy BOeReVy BXy

Figure 2: Example of my custom ABC notation. Each note represented as
an ASCII character is followed by its length encoded as a letter of the Greek
alphabet for better readability. A space character indicates progress in time.

3 Implementation

3.1 Installation

The project is written in Python 3.8.5 and all necessary dependencies can be
installed with the pip package installer using the command:

$ pip3 install -r requirements.txt

Additionally, the structure of this project as well as usage of the main func-
tions can be found in the README.md file.

3.2 Data preprocessing

I have collected over 10 hours of classical music by various composers from [4]
and some more data from [5] were used for evaluation.

The make_corpus.py script tries to convert all MIDI files into the notation
described in the previous section. Unfortunately, in many cases the py-midicsv
tool is unable to properly read the file due to corruption and different MIDI
versions.

Furthermore, I check each piece of music for its key and transpose it into
a key with no sharps or flats (C major or A minor). Since the distribution of
notes in one key is similar, the models should be able to learn the distribution
more easily.

3.3 Training the models

I have implemented three models based on the LSTM architecture using the
Keras and tensorflow libraries:

o simple_lstm consists of only one LSTM and one Dense layers and serves
as a baseline,

e [stm consists of more LSTM and more Dense layers,
e cnn_lstm tries to use convolutional layers in combination with LSTM.

The full architecture of each model can be found in the models.py file.

One problem I encountered was the large size of the one-hot encoded training
dataset which would require hundreds of gigabytes of RAM. For that reason I
had to iteratively train the models on individual batches of data instead of
giving them the entire dataset.

The models were trained for about one day each on a powerful desktop
computer and I used the Early Stopping mechanism to prevent them from over-
fitting.

3.4 Generating music

To begin the generation process the model needs a seed — a sequence of char-
acters as an initial input. I have tried using an empty sequence made of space
characters, but found that the model is unable to produce diverse enough re-
sults. Therefore, I decided to use a random sequence from the training corpus
instead.

T also found that squaring and normalizing the probability distribution before
sampling the next character helps the models achieve better harmony. Without
this modification the result seemed quite out of tune.

Another peculiar behavior of the models is the high tempo of the generated
music. I haven’t been able to explain this anomaly but it is trivial to fix this
problem in post-production and achieve the intended result.

Overall, the models produce unusable results most of the time and interesting
sequences have to be cherry-picked. However, the ratio of acceptable to poor
results is significantly better for the more complex models compared to the
baseline.

4 Evaluation

Since generating music stems from a classification problem, categorical cross-
entropy was used as an appropriate loss metric. Additionally, expected log
likelihood of a time step and accuracy have been used as is common in other
articles on this topic. Table [I] shows values of these metrics as evaluated on a
test corpus and we can see that the baseline model achieved best scores across
all metrics. However, it later becomes obvious from the qualitative evaluation
that these results have little to no relevance to the quality of the generated
music itself.

|[loss| LLt acct

simple LSTM | 2.113 -12.529 0.466
LSTM 2.674 -13.708 0.466
CNN-LSTM 2.951 -13.159 0.412

Table 1: Surprisingly, the simplest model shows best performance according to
all metrics.

In order to assess the quality of the music I have conducted a survey. I first
generated 20 samples with each model and picked two 10 second long passages.
This procedure also matches that of the articles with which I compare results.
I then collected the opinions of 8 respondents that rated the samples using five
criteria — rhythm, melody, harmony, coherence and overall score — on a scale
from 1 to 5 (5 being the best). To get a better idea of what score we are
aiming for, I included a sample composed by a real human composer in the
survey. Amusingly, even the human composition has not reached the full score.
Nevertheless, it still beats all machine learning models.

Table Bl shows the mean score for all models in each of the five criteria.
Here we can clearly see that the simple baseline model lags behind the other
models. On the other hand, the LSTM seems to outperform the CNN-LSTM
architecture, and is comparable to the GAN and VAE. We can also see that
all models are good with rhythm and struggle a bit more with melody and
coherence.

Rhythm Melody Harmony Coherence Overall
simple LSTM 2.94 1.94 2.56 2.63 2.19
LSTM 4.25 3.25 3.31 3.75 3.38
CNN-LSTM 3.67 2.5 3.00 3.19 2.75
MuseGAN|2] 3.25 2.81 2.92 3.00 2.93
Sandwich2(3] 4.26 3.68 4.08 3.22 3.62
Human 4.38 4.63 4.00 4.38 4.38

Table 2: The LSTM’s performance is comparable to that of the MuseGAN and
Sandwich2 VAE models. Still, they don’t seem to reach the quality of a human
composer.

5 Conclusion

I have implemented three models based on the LSTM architecture that can
generate new classical music in the MIDI format. Most of the times the results
are poor but interesting passages can be cherry-picked as inspiration for a human
composer. I have evaluated the models using several metrics and conducted a
user survey to assess the quality of the generated music. I also compared them
to results of other articles.

As a future extension, the models could be trained on even longer sequences,
hopefully capturing more distant dependencies in the music. Other genres of
music could be experimented with as well, although the lack of training data
in the MIDI format might be an obstacle. Finally, architectures based on the
attention mechanism that are lately gaining on popularity could be investigated.

References

[1] Jean-Pierre Briot, Gaétan Hadjeres, and Frangois-David Pachet. “Deep
learning techniques for music generation—a survey”. In: arXiv preprint arXiv:1709.01620
(2017).

[2] Hao-Wen Dong et al. “Musegan: Multi-track sequential generative adver-
sarial networks for symbolic music generation and accompaniment”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.
2018.

Xia Liang, Junmin Wu, and Jing Cao. “MIDI-Sandwich2: RNN-based Hi-
erarchical Multi-modal Fusion Generation VAE networks for multi-track
symbolic music generation”. In: arXiv preprint arXiv:1909.03522 (2019).
URL: https ://www . kaggle . com/soumikrakshit /classical -music-
midil.

URL: https://www.kaggle.com/blanderbuss/midi-classic-music,

https://www.kaggle.com/soumikrakshit/classical-music-midi
https://www.kaggle.com/soumikrakshit/classical-music-midi
https://www.kaggle.com/blanderbuss/midi-classic-music

	Introduction
	Theory
	Implementation
	Installation
	Data preprocessing
	Training the models
	Generating music

	Evaluation
	Conclusion

