
Face mask detection

Andrej Betik (456604)

25.5. 2022

1 Introduction

The aim of the project was to train a classification model which would be able
to detect whether a person is or is not wearing a mask. The model could be
used for further development, e.g.: monitoring high-risk virus transmission areas
with a video camera and subsequent determination of the rules obeying.

2 Dataset

In order to train and evaluate a model we needed lots of images with people
wearing masks. There is annotated face mask detection dataset publicly avail-
able on Kaggle [1]. Dataset contains 853 images belonging to the 3 classes, as
well as their bounding boxes. The classes are: with mask, without mask, mask
worn incorrectly. The distribution of the classes and an example of the image
and its corresponding annotation file are shown in the following figures.

Figure 1: Dataset classes distribution

Figure 2: Sample image (png) and its corresponding annotation file (xml)

1



3 Existing solutions

Generally, most of the publication focus is on face construction and identity
recognition when wearing face masks.

Mohamed Loey [2] worked on a a hybrid model using deep and classical
machine learning for face mask detection. The proposed model consists of
two components. The first component is designed for feature extraction us-
ing Resnet50. While the second component is designed for the classification
process of face masks using decision trees, Support Vector Machine (SVM), and
ensemble algorithm.

In [3], the authors developed a new facemask-wearing condition identifica-
tion method. They were able to classify three categories of facemask-wearing
conditions. The categories are correct facemask-wearing, incorrect facemask-
wearing, and no facemask-wearing. The proposed methed has achieved 98.70%
accuracy in the face detection phase.

4 Used models

4.1 Haar cascade

Approach based on a cascade function trained from a lot of positive and negative
images. It is then used to detect objects in other images. Full documentation
can be found at OpenCV [4] website and the original paper [5].

4.2 VGG19

VGG-19 [6] is a convolutional neural network that is 19 layers deep. Pre-
trained network can classify images into 1000 object categories, such as key-
board, mouse, pencil, and many animals.

The model was fine-tuned with additional dataset [7] of images of people
wearing masks. This dataset contained 6k training and 6k testing samples.

We used this model in a combination with Haar cascade model the following
way:

1. Detect face coordinates with Haar Cascade

2. Crop the image

3. Detect whether a person is or is not wearing mask (VGG19 model)

4.3 Region-based convolutional neural network

For object detection, region-based CNN detection methods are now the main
paradigm. The main contribution of R-CNN is extracting the features based on
a convolutional neural network (CNN).

Model specification and parameters
We used the newest extension of R-CNN model: Faster R-CNN. As the name
suggests, the main contribution of this variant is the quicker training. The pre-
trained Faster-RCNN model is available in PyTorch. The model was pre-trained

2



on Common Objects in Context (COCO) dataset. The model was then fine-
tuned with images from the Kaggle dataset mentioned in the section Dataset.

5 Evaluation

5.1 Issue - Multiple faces in a single image

In case of multiple faces in a single image the order of the model output face
coordinates and its labels does not always match the order of the annotation
face coordinates and its labels. See the following example.

Therefore we used Jaccard distance to find and match the closest annotation
box.

5.2 Evaluation metrics

Box overlap: Jaccard distance between prediction and annotation boxes (range
[0,1]).

Face box coordinate evaluation =
Sum of overlaps

Number of boxes
Label overlap: prediction label equals annotation label.

Labels evaluation =
Number of overlapping labels

Number of labels

3



5.3 Results

The following table shows the results of two approaches: Haar cascade with
the help of VGG19 and Faster-RCNN. The numbers in the table represents the
accuracy of the models. In case of Haar cascade + VGG19 approach, we tested
716 detections from which 145 prediction labels were correct, wheras in the case
of Faster-RCNN we tested 219 detections from which 213 were predicted cor-
rectly. The number of tested images in the case of Faster-RCNN is lower because
we used images for fine-tunning the model. The evaluation of coordinates is in
range < 0, 1 > which is the sum of image overlap percentage over the number
of images (as mentioned in evaluation metrics).

Haar cascade + VGG19 Faster-RCNN

Box coordinate evaluation 0.49 0.8
Labels evaluation 0.20 0.97

We can see that Faster-RCNN model performs way better. Faster-RCNN is
more robust model and we fine-tunned it with our dataset. Haar cascade was
not fine-tuned with our data and is rather light-weight, fast and easy to use
model.

The confusion matrix presents Faster-RCNN model performance considering
the individual classes prediction.

Figure 3: Confusion matrix model Faster-RCNN

5.4 Incorrectly classified images

Since there was a little portion of mask detections classified incorrectly we could
take a look at them. Most of them were of the class ”Mask worn incorrectly”.
That might be caused by the small number of training samples (see classes
distribution). We could improve our model by oversampling this class.

4



5.5 Testing from webcam

The goal of this project was to create a model which could be used for further
development. A possible use case would be to monitor high-risk virus transmis-
sion areas with a video camera and determine if the rules are obeyed or not.
Therefore we also tested the model by using webcam. The model successfully
recognizes the mask whenever we put it on or off with very high probability.

5



6 Repository details

The project is available at Github [8] repository. Since both model files are
larger than github limit they will be included only in the zip file. Faster-RCNN
model was trained and evaluated on CUDA on AWS cloud SageMaker (pytorch
kernel).

7 Installation and startup instructions

• Installation and startup library requirements: python, jupyter notebook,
python libraries that are being used within the notebooks. We also suggest
to use CUDA for training Faster-RCNN model.

• Startup instructions:

– Download the training data from our repository or from Kaggle and
adjust the paths according to your folder structure. There are jupyter
notebooks to train each of the models. You can run these notebooks
and train the model yourself or just load already trained models
from the repository. The models are ready to be used for face mask
detection. There are also evaluation notebooks which gives us an
insight how well the models perform.

References

[1] Face mask detection dataset. https://www.kaggle.com/datasets/andrewmvd/face-
mask-detection. Accessed: 2022-31-5.

[2] Mohamed Loey, Gunasekaran Manogaran, Mohamed Hamed N. Taha, and
Nour Eldeen M. Khalifa. A hybrid deep transfer learning model with machine
learning methods for face mask detection in the era of the covid-19 pandemic.
Measurement, 167:108288, 2021.

[3] Bosheng Qin and Dongxiao Li. Identifying facemask-wearing condition us-
ing image super-resolution with classification network to prevent covid-19.
Sensors, 20(18):5236, 2020.

[4] Haar cascade documentation opencv.
https://docs.opencv.org/3.4/db/d28/tutorial cascade classifier.html. Ac-
cessed: 2022-31-5.

[5] Paul viola, michael j. jones, “robust real-time face detection”,. International
Journal of Computer Vision 57(2), 2004. Accessed: 2022-31-5.

[6] Vgg-19. https://www.mathworks.com/help/deeplearning/ref/vgg19.html.
Accessed: 2022-31-5.

[7] Face mask detection 12k images dataset.
https://www.kaggle.com/datasets/ashishjangra27/face-mask-12k-images-
dataset. Accessed: 2022-31-5.

[8] Github repository. https://github.com/xbetik/PA026. Accessed: 2022-31-5.

6


	Introduction
	Dataset
	Existing solutions
	Used models
	Haar cascade
	VGG19
	Region-based convolutional neural network

	Evaluation
	Issue - Multiple faces in a single image
	Evaluation metrics
	Results
	Incorrectly classified images
	Testing from webcam

	Repository details
	Installation and startup instructions
	References

