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PA026: Documentation

English Premier League results prediction using Machine Learning

To download the project visit my GitHub repo.

1 Introduction

Predicting sports results is a fairly old discipline, ever since betting became so prominent.
A lot of statistical methods were tried, obtaining decent results, possibly even producing
profit if used for betting. Nowadays, the bookies have access to the most advanced
machine learning models so they can set the best odds for themselves, and of course keep
the machine learning know how under a tight seal.

Each sport has its own intricacies and it’s usually pretty difficult even for the domain
experts to predict results with high certainty. In my case, I've chosen to try and predict
football results using machine learning, so I'll foreshadow some specifics of this sport.

Firstly, it’s somewhat difficult to obtain good enough data. By that I mean data
that contain more than just the result and few extremely basic stats about the game.
Thankfully, organisations like OPTA have begun providing really detailed data in the
recent two decades, though it’s pay to use.

Secondly, even detailed data about matches and player performances is not even close
to all the information that human experts have at disposal, and still achieve barely 60
% prediciton accuracies (and that’s the best ones, usually it’s around 53-55 %). Every
league has a different style and different strength of its teams. In my case of EPL, it’s
regarded as the most competitive league in the world, which means many upsets and
shocking results.

This sort of randomness coupled with factors, that can’t be easily described by numbers
such as

e Coaching staff change

Key player injury

Unexpected surge of individual form

Player fatigue during busy spells

Locker room drama

leads to machine learning models that struggle to beat the 50 % treshold. There’s also
only 380 matches played each season, with usually a week long pause between those. That
doesn’t mean that the teams don’t play though, as there are ongoing cup competitions.
This adds another difficulty, as fatigue becomes a factor and teams otherwise touted as
favourites are forced to field a weaker team and might draw or lose to a team they’d
comfortably beat with their starting eleven fully at disposal. I should also briefly mention
that teams acquire or lose players quite often, so one can’t rely on the team’s name, but
has to search for independent performance describing features to provide to the machine
learning model.

To sum it up, the football of EPL is ripe with unexpected results, few matches played
means trouble for models requiring a lot of data, and even getting the data is not that
easy in itself.


https://github.com/Midoriii/EPL-prediction
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1.1 My Goals

I’'ve managed to get a fairly detailed dataset of 4 seasons, containing useful match
statistics and even individual player stats and ratings. My idea is to try and use team
statistics across the whole season played so far, the same stats but from a recent patch of
matches (to make use of recent form), coupled with the starting 11’s ratings and also a
few constructed features to achieve a reasonable prediction accuracy using different types
of machine learning models. The main improvement should be the explicit usage of recent
form of the teams.

I want to find out key features, the ideal window of recent form, the importance of
creating your own features and the performance of different models. I suspect that creative
feature engineering is the key to reaching human expert levels of accuracy, and that the
recent form window should be around a month at maximum, which means 3 to 5 recent
matches.

2 How to run

After obtaining the code and data from my repo, simple pip install -r requirements.txt
should be enough to install all the necessary libraries. Of course the number one assump-
tion is a working Python 3. Working Tensorflow is also needed for running RNN model
testing script.

All of the scripts are in the main folder and I will describe their usage in the later
sections.

The folder eval contains the outputs of experiments and also a README that further
describes the contents and findings. Folder graphs is self-describing I hope.

3 Data preparation

Transforming the raw data into usable datasets is handled by data_prep.py and
feature_creation.py scripts. They require no additional input, just the data in data
folder.

The match data is firstly merged with detailed team and player statistics. I've chosen
to remove in my opinion unimportant stats like how many shots were shot at different
heights and places in the net. From player statistics, I used only their ratings, to try and
evaluate the strength of the starting elevens in each match.

Afterwards, the matches were sorted by their date, so I could more easily create stats
about the recent form of the teams and later on input series for RNN models.

For each match, for both of the teams competing, the mean of their stats and player
ratings is computed across their matches played so far in that season. In addition, the
same thing is computed but only for their latest 3 / 5 / 8 matches, to reflect their recent
form. This means that from the raw data I've created 3 datasets, which are different in
the length of the recent form which is taken into account. Using normalization on the
numerical stats, I have 6 datasets in total (3 normalized, 3 raw) to test machine learning
models on, each containing 114 features (constructed included).

For the constructed features, I chose to try and use some I haven’t seen in similar
projects that are free to look into. For each team I keep its amount of wins, losses and
draws (over the course of the season and recent form). I believe that especially recent
W/D/L amounts should prove a useful feature, as it’s a thing that human experts put a
lot of weight on.
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I’ve also computed custom measure of attacking and defending strength of each team.
The idea is that home side advantage is a real and observed thing and most teams perform
vastly differently when playing at home or away, so for the home team I compute its home
attacking and defending strength, based on how many goals they score or concede when
playing at home compared to the rest of the teams in the league. Same concept goes for
the away team, taking into account its performance when playing away from home and
comparing it to the rest of the league. This is of course also done over the whole season
played so far and recent form.

More ideas on custom features are in the final section concerning improvement ideas.

4 Classical Models

Since classical machine learning models are the go to of almost every source I've seen
tackling any kind of sports prediction nowadays, I also chose to employ them, namely the
scikit-learn implementations of SVM, Gaussian Bayes, Multinomial Bayes, AdaBoost,
kNN, Random Forests and Extra Trees. I've used 25 models in total for the initial testing,
differing mostly in the number of estimators.

4.1 Initial testing

The first step was to see which type of model generally performs the best, without much
tuning. Using scikit-learn’s SelectKBest to reduce features (K = 20/30/40/50/60)
on each of the 6 datasets I ended up with 36 datasets differing in normalization, recent
form window length and feature reduction.

Testing of the models was done in 2 scenarios, both implemented by the model_test.py
script.

In the first one, every model and dataset combination was trained on a randomly
generated 85/15 train/test split 100 times, and the average accuracy was taken as the
final result. Figure 1 displays the results of the best models of each type and the length
of the recent form window.

The absolutely best performance was an Extra Trees models with 1000 estimators,
on dataset with recent form length of 3 matches, which achieved nearly 54 % accuracy.
Extra Trees and Random Forests generally outperformed other models, as the first 22
best achieved accuracies belong to either of those two classes of models. Their best
results were achieved on datasets without normalization, feature reduction didn’t affect
them much either. Interestingly, in most cases the best recent form window length is of 5
matches, but the very best model achieved its result using recent form length of 3. kNN
models were capable of promising results too, especially with k higher than 100. Detailed
results of all model and dataset combinations can be found in the eval folder, in the
results_final.csv file.

Achieving nearly 54 % accuracy is a pretty good result, on par with upper tier human
experts and slightly better than most project concerning this topic that I've seen. It’s
also a very good result given the small size of the initial data (only 4 seasons) and without
any hyperparameter tuning.

The second scenario uses the last 50 matches of each season as the testing set and the
rest of the matches as the training set, again over 100 iterations. This scenario should in
theory achieve better results, as my method relies on computing the mean values of stats
over the course of the season among other things, and these values should be more telling
when more matches have been played. Figure 2 shows the actual results, once again in
the format of the best achieved result by each model type.
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Figure 1: Initial testing, 100 iterations, random 85/15 train/test split
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Figure 2: Initial testing, 100 iterations, last 5 weeks of each season used for testing

Once again it’s the same duo dominating the rest of the models, taking up the 39 top
spots ahead of any other models. This time the recent form window’s length is skewed
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towards 5-8 matches, and the best results were achieved on feature reduced datasets. De-
tailed results are also stored in the eval folder, namely the end_of_season_results_final.csv
file. And according to expectations, the accuracy is also slightly higher, with the best
model reaching almost 57 %. This time it was once again Extra Trees model with 200 es-
timators, recent form length of 5 matches, and features reduced to the 30 most important.

The eval folder also contains information about the precision, recall and f1 scores of
models form the second scenario. Figures 3 and 4 show averages of these scores for the
combined top performing Extra Trees and Random Forests (they’re an extremely similar
type of model, so I lump them together) and kNNs respectively.

All of the models struggled with draws, even the best ones, forests and trees, man-
aged to achieve only 0.30 precision and 0.10 recall. This is somewhat understandable,
as draws are notoriously hard to predict, and are usually happening due to a team over-
performing or underperforming, something that’s almost impossible to expect, especially
just from match stats. Home victory predictions achieved impressive precisions of mostly
around 0.55 and even more impressive recalls of about 0.80, at least in the cases of forests
and trees. Away victories managed similar precision, but recall was way worse, generally
around 0.48. These findings point to a similarity with human predictions, as draws are
the most difficult to predict, while home side victories the easiest.

Draw 0.30 0.10 0.14
H Win 0.55 0.80 0.65
A Win 0.56 0.48 0.52

Figure 3: Forest scores

|_Outcome | _Precision |__Recall | fl-score _

Draw 0.38 0.05 0.10
H Win 0.52 0.85 0.64
A Win 0.54 0.45 0.50

Figure 4: kNN scores

It can be seen that kNNs peformed similarly, but a bit worse in general, as was the
case when accuracy was used as the scoring metric. Rest of the models performed way
worse, and detailed information can be found in the detailed_results.csv file.

Overall, the achieved results didn’t reach the perhaps overly optimistic expected values
of around 60 %, but did not disappoint either, as they match all but the best human
experts and quite a lot of related work on much larger datasets.

4.2 Grid search

Knowing the clearly best models, I’ve decided to try hyperparemeter tuning through
Grid Search. I've decided to try both Extra Trees and Random Forests, as they performed
the best across all the datasets. Once again I employed feature reduced and normalized
datasets too. Hyperparameter grid consisted of different values of:
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e max_features - {6, 10, 20, "auto"}
e min samples leaf - {3, 10, 20, 40}
e min_ samples split - {6, 10, 16, 40}
e n_estimators - {100, 500, 1000}

Information about each hyperparameter can be found in the official documentation,
as | think it’s nicely explained there and unnecessary to add here.

Testing and training was similar to the first scenario, with a random 85/15 split.
Each combination of hyperparameters was tested on each of the 36 datasets using 3 fold
cross-validation, using sklearn’s GridSearchCV. The whole ordeal is performed by the
model_grid_search.py script.

For each dataset, the optimal hyperparameter combination was found, and the 15 best
performing configs are stored to be easily viewed in grid_results_combined_topl5.txt
file. Unfortunately, there was no pattern among the hyperparameter configs and or
datasets, or discernable improvement. Which leads to the conclusion that instead of
hyperparameter tuning, one should look to construct better features and/or reduce avail-
able features in a worthwile manner.


https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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4.3 Ablation testing

Finally, to see which features are the most valuable, I've done ablation testing. T chose
to use an average performing Extra Trees model and the last matches of each season as
the testing set scenario. This time over 50 iterations, and only on dataset containing all
features and recent form length of 5. Done using the model_ablation_test.py script.

Results follow:
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Figure 5: Ablation testing, 50 iterations, 85/15 split, W means Without

It’s interesting to see that the ID of teams is actually useful in itself. Human experts
of course are hugely influenced in their decisions by recognizing expected favourites, and
it seems to translate positively to machine learning models too. The model itself values
stats about shots, passes and possession the most, followed by my custom made features
about team strengths and recent W/D /L. But only one stat does not seem to have a huge
say, as removing it lowers the accuracy just slightly, only removing more of them drops it
down significantly.

Slightly more hard to obtain stats, like the number of fouls and corners won, also hold
some value while not necessarily being the most important ones. But it can be seen that
just these stats and player ratings can still achieve "only" about 5 % worse accuracy,
which is honestly suprising. Penalties saved information proved to be useless though, and
it also kind of makes sense, when considering the nature of such event.

Player ratings seem to be also important, but when checking what the model itself finds
important in explaining the result, it’s interesting to see that it’s only the attackers and
midfielders that the model finds valuable, with the ratings of defenders and goalkeepers
at the bottom of the standings.

The model also usually finds the recent form stats a bit more important than their
seasonal equivalents. These can be seen by running the script and watching the console
output.

Probably the most interesting finding is that the removal of the team ratings actually
helps the accuracy. It is kind of understandable, since these ratings are subjective and

7
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not computed using a formula on team stats. It might be a good idea to use one’s own,
custom method of calculating a team’s rating, based on hard data.

It seems that the most important stats are pretty intuitive, and that it is also necessary
to construct useful features if one wants to reach outstanding accuracies. It might also
be a good idea to try and find performance disturbing features and remove them, like is
the case with the team ratings here.

5 RNNs

RNNs haven’t really been tried that often from what I've seen when it comes to sports
results predictions, which is surprising, given their penchant for working with data series.
In essence, they should be capable of understanding recent form without me having to
provide it for them, like with the classical models. I've decided to give them a try.

First T had to construct data series from the raw data. This is the purpose of the
rnn_data_prep.py script, which generates for each match an input series of length spe-
cified in a command line argument, with normalized stats, which should help the network
learn faster. I've experimented with series lengths of 2/3/4/5/8.

I tried using 3 main types architectures, all using LSTM cells. One shallow with single
LSTM, second was several stacked LSTMs and the third one as a single bidirecitonal
LSTM. Experimenting with different dropouts, epoch numbers, batch sizes and several
different numbers of units in each LSTM was handled by the rnn_test.py script.

The results were far from satisfactory, as the best accuracy achieved was meager
48.5 %, comparable to the worst classical models. The networks overfitted far too much
and no amount of dropout or different activations nor unit counts helped. All three
architectures achieved pretty much the same accuracy, with the stacked one having a
slightly lesser loss. Interestingly enough, all networks preferred series lengths of 2 and 3,
which produced very similar results and scored the best. The longer the series the worse
the accuracy, which makes some sense, as form in football rarely lasts for longer than 4
matches. FEach architecture’s loss and accuracies can be seen in the rnn_results.txt
file, with values ordered to correspond to growing input series’ length.

It would seem that for neural networks to work, one would need a much bigger dataset,
which depending on the sport might be a problem. This also kind of explains the lack of
use of RNNs in such studies, however well they might be suited for predicting based on a
series of results.
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6 Results and Improvement ideas

To recap my findings. I've managed to achieve decent accuracies of nearly 54 % (57 %)
on random (end of season) testing matches, using a mix of intuitively important stats,
custom created features, info about recent form (which I haven’t seen anyone else use)
and ratings of the players of the starting 11. Considering the size of the dataset, that’s
quite a nice result.

By far the best models proved to be Extra Trees, closely followed by Random Forests
and kNNs trailing further behind. The models struggled with predicting draws but fared
really well when predicting home victories, which is something strikingly similar to human
predictions.

The best features proved to be shots on target, accurate passes, recent W/D/L, pos-
session percentage and my computed home and away attacking and defensive strength.
Recent form of stats was usually slightly more important than its seasonal counterpart.
Player ratings help, but it’s mostly the attacking players. Recent form was best computed
over the last 3-5 matches. Feature reduction also seemed to help, normalization not so
much. Hyperparameters also don’t seem to matter that much, as grid search proved to
be futile.

RNNs proved to have potential, but in my case couldn’t match the other classifiers
because of insufficient data. No amount of architecture and hyperparameter tweaking
could overcome that. Their usage might be interesting in other sports, where data is
more readily available and perhaps more matches per season are played.

The most obvious way to improve the results would be additional custom features. My
idea would be to include goal difference stat, information about winning or losing streak
(simple 1 for yes, 0 for no), perhaps points per match home and away. Player ratings
could also be aggregated into offense / midfield / defense ratings, as they by themselves
didn’t amount to much, especially defenders’. It might be also interesting to include an
indicator if the starting eleven is far from the optimal one, as that’s most likely happen
to injuries and rotations and would mean significant weakening of the side. This would
require some manual input of expertise though. In real world, derbies hold a special im-
portance to most teams, and they frequently produce results that don’t make sense when
looking only at the stats of the teams, so a simple indicator if the match is a derby could
maybe prove to be useful too. Lastly, custom team rating in the form of some function
over team stats could be also productive, as the subjective rating of experts only seemed
to confuse the models.

The scripts themselves could also use some refactoring work to allow for better exper-
iments, as they currently require too much manual editing.
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7 Related work

Most of the related work I’ve seen uses basic stats combined with some custom com-
puted features, to reach slightly above 50 % accuracy. The most advanced research I've
come across uses extremely detailed and sizeable datasets with features like expected goals
(xG), which is computed using formulas that require GPS data - not something easy to
come by. The key attributes of performances of individual players is also something I've
seen data scientists experiment with. As well as Twitter posts analysis to take into a-
ccount pre-match news. While interesting ideas, I thought them to be outside of the
scope of this project, due to time constraints. Sadly, the absolute peak research is done
in secrecy by betting companies.

I've seen RNNs used only to predict the outcome of already running match, based on
the events happening in it. They performed really well on that, but then again, it’s rather
easy to predict the outcome of a match that’s running and one can see the performances
and stats. I haven’t come across any research using them to predict the outcome of a
match before it starts.

Below I've listed some of the interesting stuff I came across when doing my initial
research on this topic:

e https://www.researchgate.net/publication /257048220

e https://www.researchgate.net/publication/338090323

e https://www.imperial.ac.uk/media/imperial-college /faculty-of-engineering /computing/
public/1718-ug-projects/Corentin-Herbinet-Using-Machine-Learning-techniques-to- predict-
the-outcome-of-profressional-football-matches.pdf

e https://pdfs.semanticscholar.org/e556/af01e86¢3414042aa69831eabth398e6694.pdf

e https://www.sciencedirect.com/science/article/pii/S2210832717301485

e https://towardsdatascience.com/what-ive-learnt-predicting-soccer-matches-with-machine-
learning-b3f8b445149d

e http://kickoff.ai/
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