
Algorithmic Exploration of the Game Mathematico

Samuel Gazda
Masaryk University, FI
469083@mail.muni.cz

Michal Barnišin
Masaryk University, FI
485135@mail.muni.cz

Abstract

Mathematico is a single-player, sequential, randomised, optimisation game with
a large state space and complex scoring rules. In this report1, we introduce and
analyse this game, and suggest reinforcement learning agents to solve the game. We
conclude by comparing the results with the collected human performance data and
proposing further improvements which might lead to super-human performance.

1 Introduction

In recent years there has been a lot of innovation in the world of the game-playing algorithms. The
progress in deep learning opened many possibilities out of the reach of the classical approaches
based on pure state-space exploration. One of the most successful algorithms was AlphaZero [2],
which combines the Monte Carlo Tree Search (MCTS) and the deep neural network trained by
Reinforcement learning (RL). In this work, we tried to implement a similar approach to AlphaZero
for the game Mathematico.

Mathematico is a single-player strategy card game. The player is tasked with placing progressively
drawn cards onto the board of size five by five. After the board is full, they are then rewarded with
points, based on different combinations of cards placed. The rules are quite simple, but the state
space of this game is large enough to make beating the human player non-trivial.

In this work, we introduce our version of AlphaZero-inspired algorithm and compare it to several
other approaches, including the MCTS approach and human performance. In the first parts of this
work, we write about the game itself and introduce several game-playing approaches. The final parts
present the evaluations of the used approaches and provide the conclusion, our observations and
suggestions for possible improvements.

2 Related Work

AlphaZero was created as a generalisation of AlphaGo Zero by the research company DeepMind. It
consists of the Monte Carlo Tree Search combined with a neural network. The MCTS part searches
through the game states, but instead of the typical (randomised) roll-out phase of the MCTS, this
approach uses Value and Policy Heads of the network to approximate the evaluation of the analysed
states and guide the MCTS to more promising states [2]. The rules of the game were incorporated
into the model via the game state, rewards, and transition functions. The authors claim, that the
approximation that the network provides is imperfect, but those imperfections are evened out due to
the way the MCTS works with these values.

The network trained in a self-play loop. The model played the game against another instance of itself
and then the network was trained on the data collected from these games. The trained AlphaZero
model achieved state-of-the-art performance within 24 hours of training in Chess, Go and Shogi [2].

1This report describes the project we solved from FI:PA026 during Spring 2023 semester.

3 Mathematico

Mathematico [1] is a card game, in which the player’s objective is to get a high score by placing
the sequentially drawn cards on the five-by-five grid. Each card has a numerical value, from one to
thirteen. The deck consists of four copies of each card. Every turn, a single card is drawn randomly
from the remaining cards, and placed by the player on an unoccupied cell on the board. The board
is evaluated after filling all the spaces. The final score is the sum of the scores of the combinations
found in the rows, columns and the longest diagonals. The possible combinations (and their scores)
are:

• Pair (10)

• Two pairs (20)

• Three of a kind (40)

• Straight (50)

• Full House (80)

• Full House with pair of ones and triplet of threes (100)

• Four of a kind (160)

• Straight ten through one (150)

• Four ones (200)

Additionally, another ten points are awarded for any combination on each of the longest diagonals.

Figure 1: Finished game example

As an example, consider Figure 1. It would be evaluated in the following manner:

• The rows would be evaluated from top to bottom as Two pairs (20), Three of a kind (40),
Pair (10), another Pair (10) and Two pairs (20).

• The columns would be evaluated from left to right as Nothing (0), Three of a kind (40), Pair
(10) and the Straight (50).

• The main-diagonal would be counted for nothing (0) and the anti-diagonal would be the
Straight ten through one with the diagonal bonus (150+10).

2

Together, that would make 360 points.

For this project, we used the implementation of Mathematico that could be found at this Github
repository.

4 Algorithmic Approaches

In our work we considered AlphaZero to be an expansion of Monte Carlo Tree Search. As the first
step, we implemented an MCTS approach with the random-playout roll-out strategy. Then, we
added (only) the Value Network on top of the MCTS (as a separate playout strategy), which was
trained through the self-play. Finally, we compared our implementation with a customised code from
open_spiel2 library. In this chapter, we briefly introduce the details of our implementation.

4.1 Monte Carlo Tree Search

MCTS is a general state-space search algorithm for solving problems with large state spaces. It uses
random sampling to approximate a perfect evaluation function. The error of this approximation
converges with the growing number of random samples, which makes it suitable for situations with
time restrictions (e.g. for making one move).

MCTS works by building a tree of possible game states in four steps:

• Selection: A node N of the game tree is selected as an optimal node for further exploration.

• Expansion: Creation of new subsequent states based on possible actions from the node N ,
selected in the previous step.

• Simulation: The roll-out policy is used to approximate the (real expected) value of each
of the newly created states. The default version of this policy is a random playout, which
takes random actions until a leaf state is found. The value of this leaf state is used as an
approximation of the state, from which the simulation took place.

• Backpropagation: The value used as the approximation is propagated back from the
selected node up to the root.

These steps are repeated until the resources run out, which could be either the limit on the number
of iterations or the time limit. In the end, the best action from the root (current) state of the game is
chosen based on these backpropagated values.

There exist a lot of implementations of MCTS, so we decided against re-implementing it ourselves.
We experimented with two implementations. One3 is fully implemented in Python and is relatively
simple. Initially, we chose this one as it enabled us to make changes to the algorithm (the package
does not directly support random nodes in the game tree). The other one is implemented in the
open_spiel library and is more complex but better optimised.

In order to be able to use these libraries, we needed to define Mathematico as a Markov decision
process. We decided to model each turn in two separate states. The first state without the possibility
to choose an action models a random event of drawing the next card from the deck. The second state
models a player’s action to place a card on an empty cell of the board. We chose this approach to
avoid problems where the randomly drawn card got fixed during exploration, which resulted in an
incomplete expansion of the state tree.

4.2 AlphaZero

AlphaZero is a general reinforcement learning algorithm, designed for perfect information 2-player
games. It can be characterised as a cooperation of MCTS with a neural network, which guides the
simulation phase.

2https://github.com/deepmind/open_spiel
3https://github.com/pbsinclair42/MCTS

3

https://github.com/balgot/mathematico
https://github.com/balgot/mathematico
https://github.com/deepmind/open_spiel
https://github.com/pbsinclair42/MCTS

More specifically, consider a game state, in which a player is to make their decision. AlphaZero will
use the MCTS as described above, with addition that the expansion phase uses a Value Head of the
network to estimate the expected values of to-be-selected nodes; and the simulation phase uses a
Policy Head of the network to estimate the promising moves. The roll-out is then a sample based on
these estimates.

To obtain good estimates from both heads, during the training, the algorithm is trying to maximise
the expected reward. The training consists of repeating these stages:

1. Generate Trajectories4 using self-play.

2. Teach the network to approximate the MCTS for the collected states.

In this work, we consider the value-head-only based approach, where the roll-out policy selects the
state with the highest value; and the implementation of AlphaZero by open_spiel library, which
contains both heads.

4.2.1 Training

Both agents were trained using Adam optimiser until the loss converged. The loss functions for the
agents during the training were:

1. For the value-head-only implementation, consider the batch of training states S, then the
loss is defined as:

L1 =
∑
s∈S

αs · (mcts(s)− V (s))2 + βs · (V (s)− score(s))2

where mcts(s), V (s), score(s) are the value of s approximated by the MCTS, the value
network or by the final score of the game which continued from s, respectively. αs and
βs are scaling factors based on the certainty of the score computed by the MCTS (i.e. a
multiple of the normalised logarithm of visited states in the subtree rooted at s (only for
αs), divided by the logarithm of the remaining game length). The motivation behind these
factors is to account for uncertainty in the exploration, as typically, the number of MCTS
rollouts is much smaller than the number of random choices along any path.

2. The open_spiel’s implementation is minimising the quantity:

L2 = Lpolicy + Lvalue + Lreg

where Lpolicy is a (softmax) categorical cross-entropy between the policy head and the
probabilities calculated by MCTS, Lvalue is a mean squared error between value head and
MCTS value and Lreg is a (L2) regularisation term.

Value-head-only agent was (optionally) pretrained on a generated dataset of random Mathematico
positions and their (exact) evaluations using the mean squared error.

5 Evaluation

To evaluate the trained agents and compare them with humans, we used these metrics:

• Average Score Over N Games (AVG)

• Tournament Score (TS)

• Average Time Per Game (AVT)

4A trajectory is a sequence of states from the initial game state to a final state, with obtained rewards and
chosen actions.

4

5.1 Average Score Over N Games

As Mathematico can be viewed as an optimisation game, where each player tries to win by maximis-
ing their own score, the AVG represents the expected score a player achieves in one game. For the
evaluation, we used a pre-defined set of games G. The average score of player p is then computed as:

AV G(p) =
1

|G|
∑
G∈G

sG(p)

where sG(p) is the final score of the player p on the game G.

5.2 Tournament Score

Similar to ELO ratings, TS measures how well the players play against each other. The winner of a
Mathematico game is usually the player with the highest score, i.e. irrelevant of the magnitude of
the score difference against other players. In TS, all |P| = M players play the same set of games G.
After each game, the players are rewarded points: the winner is given M points, the second place
M − 1 points, . . . , last player scores 1 point. The points are then summed and the average is taken:

TS(p) =
1

M · |G|
∑
G∈G

|{p′ ∈ P | sG(p) ≥ sG(p
′)}|

Therefore TS(p) ∈ (0, 1], and the higher the score, the better the player plays against other opponents.
Note that the value is dependent on the choice of P .

5.3 Average Time Per Game

To compare the trained agents with the human play, this metric uses the average wall clock time of
one game (consisting of 25 moves).

5.4 Human Agents

To collect the human data on the games G, we have used two different platforms:

• pygame interface (as in Figure 1).
• Google Colab’s interface5 written in the Slovak Language based on the target users’ prefer-

ence (see Figure 2).

Figure 2: Google Colab’s interface. While the numbers might not be very visible, the users reported
that they were understandable.

In total, we have collected 4 different responses. Each of the users was then asked about their
familiarity with the game Mathematico, on a scale 0 – 3. One user marked themselves as a beginner

5https://colab.research.google.com/drive/1PW1nr7JcVvlaiW4_Wvt_TdU1LEFfyuYC?usp=
sharing

5

https://colab.research.google.com/drive/1PW1nr7JcVvlaiW4_Wvt_TdU1LEFfyuYC?usp=sharing
https://colab.research.google.com/drive/1PW1nr7JcVvlaiW4_Wvt_TdU1LEFfyuYC?usp=sharing

(0/3)6, two users reported a high degree of familiarity (2/3) and one user expert level (3/3). We
acknowledge that the number of responses is low and that further evaluation might benefit from a
larger sample size.

Player Average Score Time Per Game (s) Tournament Score
human #2 (skill 3/3) 389 117.65 0.85
human #3 (skill 2/3) 356 101.107 0.825
human #1 (skill 2/3) 308 123.751 0.525
human #4 (skill 0/3) 285 163.523 0.4

Table 1: Human performance evaluation on a set of 10 games, for which all evaluators submitted
their responses. The tournament scores are calculated by taking into account only human players and
the 10 games.

5.5 Results

We have compared different variations of MCTS with random, trained AlphaZero agents and the
human evaluators – the results for the best (picked) agents are summarised in Table 27.

Rank Player Average Score Time per Game (s)
1 human player #2 (skill 3/3) 373 117.65
2 human player #3 (skill 2/3) 366.5 101.12
3 human player #1 (skill 2/3) 303.5 123.75
4 OpenSpiel MCTS [1000] 209.5 66.10
5 MCTS [500] 208 53.07
15 Mixed MLP(hidden: 1024) [50] 197 6.95
16 Mixed CNN(64x6) [50] 203 49.23
17 MLP(hidden: 1024) [100] 193 14.50
18 MCTS [50] 192.5 4.83
45 random #4 88.5 0.0008
50 OpenSpiel MLP(1024x6) [20] 72.5 1.74

Table 2: Rankings (by TS), Average Scores, and Time of 50 tested players. The [number] in the
brackets for MCTS is the number of simulations per move.

Both MCTS implementations achieved similar scores on the evaluation set G, increasing with the
number of simulations. We have tested MCTS implementation on another set of evaluation games, to
examine this property, the results are presented in Figure 3.

6This user also played only 50% of the evaluation games with the mean score of 285 – we have therefore
excluded them from the comparison of the trained agents.

7To see the full table, with the achieved scores for individual games in G, see evaluation/data.csv in the
attachments.

6

Figure 3: The performance of (pure) MCTS, as a function of the number of iterations per move.
While the increase in the number of simulations leads to a logarithmic increase in the strength (the
x-axis is logarithmic), the time increases linearly, and even the games with 10K simulations per move
do not outperform the humans.

Among different AlphaZero agents, no agent achieved better performance than equivalent pure-MCTS
agents. Our hypothesis is that the trained neural networks did not have enough approximative power,
and we observed, that during training, that (especially smaller models) quickly converged to the
constant prediction of the value of a random player. Our time and resources budget did not allow us
to train larger networks (the largest had ≈ 18 million parameters and was trained for ≥ 10 hours).

Based on the idea, that neural-network-guided search might be beneficial in the early stages of the
game, where it is necessary to run many simulations to faithfully approximate the score, and that the
later stages of the game might benefit from more deterministic (pure MCTS) simulations, we have
also tested Mixed agents. These agents do roll-outs according to the neural network until move 20,
from which only random roll-outs are performed. This combination seems to achieve slightly higher
scores than the individual constituent agents do. However, to fully verify this idea, it is necessary to
conduct further research.

Figure 4: Comparison of analysed approaches. the x-axis is the average score per game. The (orange)
random agents score 83 points. The implemented MCTS (blue), based on the number of simulations,
is able to achieve average scores up to 250 (for 5,000 simulations per move). The enhanced MCTS
implementation (yellow) from open_spiel scores in the range 140–250. Humans (green) tend to
score around 300 points, on average. Trained AlphaZero agents are as strong as MCTS.

Regarding the defined metrics, we have observed strong correlations between ranking by Average
Score and Tournament Score (with significant values of both the Spearman coefficient 0.98 and
Kendall’s τ 0.92), thus concluding that the scoring methods are (almost) equivalent. Similar obser-
vations can be made comparing the ranking of Average Score and Average Time (0.89 Spearman
coefficient, 0.73 Kendall’s τ).

7

6 Conclusion

In the report, we have presented a few agents for solving the game Mathematico. We began by
introducing the game, and, inspired by the AlphaZero paper, we implemented MCTS and AlphaZero
agents. We have also collected human data and compared the agents.

While all agents confidently defeat the random play, neither of the agents is comparable with human
performance, and further research and training might be needed to achieve super-human performance.
Trained AlphaZero agents were not able to learn the game values, which we hypothesise is due to the
restrictions on their size or the training times.

Future work might benefit from a larger sample of human games, and a larger training budget. Other
approaches, such as Deep Q Networks or even an ensemble of different agents, might also help to
achieve better performance.

References
[1] balgot. Mathematico. https://github.com/balgot/mathematico. 2022.
[2] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm. 2017. eprint: arXiv:1712.01815.

8

https://github.com/balgot/mathematico
arXiv:1712.01815

A Documentation

The attached code contains 3 folders:

• source_code/ with the code for this project;
• mathematico/ and azero/ with a copy of (custom) libraries used within this project.

The further instructions in this section assume that you working from within ./source_code/.

The distributed source code contains multiple files for different purposes:

• To run the evaluation and view the results, check out evaluation/
• To see examples and the learning algorithms, train an agent, visit notebooks/
• To view the implementation, head to src/

A.1 Requirements

This project was built using Python==3.10, but should be able to support Python>=3.9 –
Python=<3.10. To install the necessary packages, run:

pip install -r requirements.txt

A.2 Usage

The section will present the basic usage of the distributed code, for more details, please refer to the
documentation within the code.

A.2.1 Mathematico

The studied game, Mathematico, is part of another package. To install the game, use:

URL=’git+https://github.com/balgot/mathematico.git#egg=mathematico&subdirectory=game’
pip install $URL

In order to play the game, you need to supply a Player instance to the Mathematico object, e.g.:

from mathematico import Mathematico, RandomPlayer

game = Mathematico()
player1 = RandomPlayer()
game.add_player(player1)
game.add_player(RandomPlayer())
... add as many players as needed
game.play()

which returns the achieved scores per specified players in the order they were added to the game.

For other options of installation (Python<3.9), detailed rules explanation, and detailed interface
options refer to this GitHub repository. See also notebooks/mathematico.ipynb for examples.

A.2.2 open_spiel adaptation of Mathematico

To use Mathematico from the open_spiel (pyspiel) package, it is sufficient to import one
package:

import src.agents.ospiel # registers the game automatically
import pyspiel

9

https://github.com/balgot/mathematico
https://github.com/deepmind/open_spiel

game = pyspiel.load_game("mathematico")
state = game.new_initial_state()

Check notebooks.mcts_open_spiel.ipynb for examples of how to use this package.

A.2.3 MCTS Agents

There are two types of MCTS agents in this repository:

• Customized Python implementation, inspired by mcts, see the corresponding class for further
details:

from src.agents.mcts_player import MctsPlayer

MAX_TIME = 500 # 500 ms per move
MAX_SIMULATIONS = 20 # 20 MCTS rollouts per move

custom_mcts_player = MctsPlayer(MAX_TIME, MAX_SIMULATIONS)

• open_spiel implementations, available as:

from src.agents.ospiel import OpenSpielPlayer

MAX_SIMULATIONS = 20 # 20 MCTS rollouts per move

open_spiel_player = OpenSpielPlayer(MAX_SIMULATIONS)

A.2.4 Train open_spiel AlphaZero agent

To train (customized open_spiel) AlphaZero agent, use the script at src/train_azero.py. This
will require authentication for online logging, which you can disable by defining the environment
variable WANDB_MODE=offline.

To see help
python src/train_azero.py --help

Train default agent
python src/train_azero.py

Loading trained agent Assuming that the previous script saved the configuration and the check-
points to PATH/ folder, it is possible to load the trained bot using:

from azero import load_trained_bot as _load_azero_bot
import json
import os

PATH = "PATH/"
CHECKPOINT = -1

def load_trained_bot():
with open(os.path.join(PATH, "config.json"), "r") as f:

cfg = json.load(f)

bot, _ = _load_azero_bot(cfg, PATH, CHECKPOINT, is_eval=True)
return bot

10

https://github.com/pbsinclair42/MCTS

The trained bot is not compatible with the mathematico interface; therefore, it is necessary to wrap
it, for example, by:

from src.agents.ospiel import OpenSpielPlayer

the specific number does not matter here,
the original (training) value will be used
MAX_SIMULATIONS = 20
player = OpenSpielPlayer(MAX_SIMULATIONS)
player.bot = bot

A.2.5 Train (value-network-only) agent

Use notebooks notebooks/rf-mlp.ipynb or notebooks/rf-cnn.ipynb to train these agents.

A.2.6 Evaluation of trained agents

See evaluation/perft.py for detailed instructions and evaluation/perft.sh for examples of
how to use this script.

11

	Introduction
	Related Work
	Mathematico
	Algorithmic Approaches
	Monte Carlo Tree Search
	AlphaZero
	Training

	Evaluation
	Average Score Over N Games
	Tournament Score
	Average Time Per Game
	Human Agents
	Results

	Conclusion
	Documentation
	Requirements
	Usage
	Mathematico
	open_spiel adaptation of Mathematico
	MCTS Agents
	Train open_spiel AlphaZero agent
	Train (value-network-only) agent
	Evaluation of trained agents

